Reinforcement Learning With Model-Based Assistance for Shape Control in Sendzimir Rolling Mills

被引:3
|
作者
Park, Jonghyuk [1 ]
Kim, Beomsu [1 ]
Han, Soohee [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Actor-critic policy gradient; cold rolling mill; partially observable Markov decision process (MDP); reinforcement learning; Sendzimir rolling mill (ZRM); CONTROL-SYSTEMS; IMPROVEMENT;
D O I
10.1109/TCST.2022.3227502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As one of the most popular tandem cold rolling mills, the Sendzimir rolling mill (ZRM) aims to obtain a flat steel strip shape by properly allocating the rolling pressure. To improve the performance of the ZRM, it is meaningful to adopt recently emerging deep reinforcement learning (DRL) that is powerful for difficult-to-solve and challenging problems. However, the direct application of DRL techniques may be impractical because of a serious singularity, partial observability, and even safety issues inherent in mill systems. In this brief, we propose an effective hybridization approach that integrates a model-based assistant into model-free DRL to resolve such practical issues. For the model-based assistant, a model-based optimization problem is first constructed and solved for the static part of the mill model. Then, the obtained static model-based coarse assistant, or controller, is improved by the proposed reinforcement learning, considering the remaining dynamic part of the mill model. The serious singularity can be resolved using the model-based approach, and the issue of partial observability is addressed by the long short-term memory (LSTM) state estimator in the proposed method. In simulation results, the proposed method successfully learns a highly performing policy for the ZRM, achieving a higher reward than pure model-free DRL. It is also observed that the proposed method can safely improve the shape controller of the mill system. The demonstration results strongly confirm the high applicability of DRL to other cold multiroll mills, such as four-high, six-high, and cluster mills.
引用
收藏
页码:1867 / 1874
页数:8
相关论文
共 50 条
  • [31] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [32] FEEDBACK DESIGN OF A CANONICAL MULTIVARIABLE SYSTEM WITH APPLICATION TO SHAPE CONTROL IN SENDZIMIR MILLS
    RINGWOOD, JV
    OWENS, DH
    GRIMBLE, MJ
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1994, 116 (01): : 104 - 110
  • [33] Hybrid control for combining model-based and model-free reinforcement learning
    Pinosky, Allison
    Abraham, Ian
    Broad, Alexander
    Argall, Brenna
    Murphey, Todd D.
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2023, 42 (06): : 337 - 355
  • [34] Laboratory experiments of model-based reinforcement learning for adaptive optics control
    Nousiainen, Jalo
    Engler, Byron
    Kasper, Markus
    Rajani, Chang
    Helin, Tapio
    Heritier, Cedric T.
    Quanz, Sascha P.
    Glauser, Adrian M.
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2024, 10 (01)
  • [35] Model-based reinforcement learning control of reaction-diffusion problems
    Schenk, Christina
    Vasudevan, Aditya
    Haranczyk, Maciej
    Romero, Ignacio
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2024, 45 (06): : 2897 - 2914
  • [36] Sample-efficient model-based reinforcement learning for quantum control
    Khalid, Irtaza
    Weidner, Carrie A.
    Jonckheere, Edmond A.
    Schirmer, Sophie G.
    Langbein, Frank C.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [37] Model-Based Reinforcement Learning for Optimal Feedback Control of Switched Systems
    Greene, Max L.
    Abudia, Moad
    Kamalapurkar, Rushikesh
    Dixon, Warren E.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 162 - 167
  • [38] Transmission Control in NB-IoT With Model-Based Reinforcement Learning
    Alcaraz, Juan J.
    Losilla, Fernando
    Gonzalez-Castano, Francisco-Javier
    IEEE ACCESS, 2023, 11 : 57991 - 58005
  • [39] Robust Model-Based Reinforcement Learning Control of a Batch Crystallization Process
    Benyahia, B.
    Anandan, P. D.
    Rielly, C.
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 89 - 94
  • [40] Model-Based Graph Reinforcement Learning for Inductive Traffic Signal Control
    Devailly, Francois-Xavier
    Larocque, Denis
    Charlin, Laurent
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 5 : 238 - 250