Laboratory experiments of model-based reinforcement learning for adaptive optics control

被引:1
|
作者
Nousiainen, Jalo [1 ,2 ]
Engler, Byron [3 ]
Kasper, Markus [3 ]
Rajani, Chang [4 ]
Helin, Tapio [1 ]
Heritier, Cédric T. [3 ,5 ,6 ]
Quanz, Sascha P. [7 ]
Glauser, Adrian M. [7 ]
机构
[1] LUT University, Lappeenranta, Finland
[2] Aalto University, Department of Mathematics and Systems Analysis, Aalto, Finland
[3] European Southern Observatory, Garching bei München, Germany
[4] University of Helsinki, Helsinki, Finland
[5] DOTA, ONERA, Salon,cedex Air, France
[6] Aix Marseille University, CNRS, CNES, LAM, Marseille, France
[7] ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
关键词
D O I
10.1117/1.JATIS.10.1.019001
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Adaptive optics control using model-based reinforcement learning
    Nousiainen, Jalo
    Rajani, Chang
    Kasper, Markus
    Helin, Tapio
    [J]. OPTICS EXPRESS, 2021, 29 (10): : 15327 - 15344
  • [2] Advances in model-based reinforcement learning for Adaptive Optics control
    Nousiainen, Jalo
    Engler, Byron
    Kasper, Markus
    Helin, Tapio
    Heritier, Cedric T.
    Rajani, Chang
    [J]. ADAPTIVE OPTICS SYSTEMS VIII, 2022, 12185
  • [3] Toward on-sky adaptive optics control using reinforcement learning Model-based policy optimization for adaptive optics
    Nousiainen, J.
    Rajani, C.
    Kasper, M.
    Helin, T.
    Haffert, S. Y.
    Verinaud, C.
    Males, J. R.
    Van Gorkom, K.
    Close, L. M.
    Long, J. D.
    Hedglen, A. D.
    Guyon, O.
    Schatz, L.
    Kautz, M.
    Lumbres, J.
    Rodack, A.
    Knight, J. M.
    Miller, K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 664
  • [4] Adaptive Discretization for Model-Based Reinforcement Learning
    Sinclair, Sean R.
    Wang, Tianyu
    Jain, Gauri
    Banerjee, Siddhartha
    Yu, Christina Lee
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [5] Model-Based Reinforcement Learning For Robot Control
    Li, Xiang
    Shang, Weiwei
    Cong, Shuang
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2020), 2020, : 300 - 305
  • [6] Control Approach Combining Reinforcement Learning and Model-Based Control
    Okawa, Yoshihiro
    Sasaki, Tomotake
    Iwane, Hidenao
    [J]. 2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1419 - 1424
  • [7] Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning
    Ma, Yecheng Jason
    Shen, Andrew
    Bastani, Osbert
    Jayaraman, Dinesh
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 5404 - 5412
  • [8] Efficient reinforcement learning: Model-based acrobot control
    Boone, G
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 229 - 234
  • [9] Multiple model-based reinforcement learning for nonlinear control
    Samejima, K
    Katagiri, K
    Doya, K
    Kawato, M
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2006, 89 (09): : 54 - 69
  • [10] Offline Model-Based Reinforcement Learning for Tokamak Control
    Char, Ian
    Abbate, Joseph
    Bardoczi, Laszlo
    Boyer, Mark D.
    Chung, Youngseog
    Conlin, Rory
    Erickson, Keith
    Mehta, Viraj
    Richner, Nathan
    Kolemen, Egemen
    Schneider, Jeff
    [J]. LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211