Reinforcement Learning With Model-Based Assistance for Shape Control in Sendzimir Rolling Mills

被引:3
|
作者
Park, Jonghyuk [1 ]
Kim, Beomsu [1 ]
Han, Soohee [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Convergence IT Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Actor-critic policy gradient; cold rolling mill; partially observable Markov decision process (MDP); reinforcement learning; Sendzimir rolling mill (ZRM); CONTROL-SYSTEMS; IMPROVEMENT;
D O I
10.1109/TCST.2022.3227502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As one of the most popular tandem cold rolling mills, the Sendzimir rolling mill (ZRM) aims to obtain a flat steel strip shape by properly allocating the rolling pressure. To improve the performance of the ZRM, it is meaningful to adopt recently emerging deep reinforcement learning (DRL) that is powerful for difficult-to-solve and challenging problems. However, the direct application of DRL techniques may be impractical because of a serious singularity, partial observability, and even safety issues inherent in mill systems. In this brief, we propose an effective hybridization approach that integrates a model-based assistant into model-free DRL to resolve such practical issues. For the model-based assistant, a model-based optimization problem is first constructed and solved for the static part of the mill model. Then, the obtained static model-based coarse assistant, or controller, is improved by the proposed reinforcement learning, considering the remaining dynamic part of the mill model. The serious singularity can be resolved using the model-based approach, and the issue of partial observability is addressed by the long short-term memory (LSTM) state estimator in the proposed method. In simulation results, the proposed method successfully learns a highly performing policy for the ZRM, achieving a higher reward than pure model-free DRL. It is also observed that the proposed method can safely improve the shape controller of the mill system. The demonstration results strongly confirm the high applicability of DRL to other cold multiroll mills, such as four-high, six-high, and cluster mills.
引用
收藏
页码:1867 / 1874
页数:8
相关论文
共 50 条
  • [41] Efficient model-based reinforcement learning for approximate online optimal control
    Kamalapurkar, Rushikesh
    Rosenfeld, Joel A.
    Dixon, Warren E.
    AUTOMATICA, 2016, 74 : 247 - 258
  • [42] Model-Based OPC With Adaptive PID Control Through Reinforcement Learning
    Kim, Taeyoung
    Zhang, Shilong
    Shin, Youngsoo
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2025, 38 (01) : 48 - 56
  • [43] DATA-EFFICIENT MODEL-BASED REINFORCEMENT LEARNING FOR ROBOT CONTROL
    Sun, Ming
    Gao, Yue
    Liu, Wei
    Li, Shaoyuan
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2021, 36 (04): : 211 - 218
  • [44] Model-Based Cross-Scale Reinforcement Learning Optimal Control
    Li, Gonghe
    Zhou, Linna
    Liu, Xiaomin
    Yang, Chunyu
    2024 6th International Conference on Electronic Engineering and Informatics, EEI 2024, 2024, : 906 - 910
  • [45] Control of Magnetic Surgical Robots With Model-Based Simulators and Reinforcement Learning
    Barnoy, Yotam
    Erin, Onder
    Raval, Suraj
    Pryor, Will
    Mair, Lamar O.
    Weinberg, Irving N.
    Diaz-Mercado, Yancy
    Krieger, Axel
    Hager, Gregory D.
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2022, 4 (04): : 945 - 956
  • [46] Model-Based Reinforcement Learning Control of Electrohydraulic Position Servo Systems
    Yao, Zhikai
    Liang, Xianglong
    Jiang, Guo-Ping
    Yao, Jianyong
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2023, 28 (03) : 1446 - 1455
  • [47] Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
    Nikishin, Evgenii
    Abachi, Romina
    Agarwal, Rishabh
    Bacon, Pierre-Luc
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7886 - 7894
  • [48] Model-based graph reinforcement learning for inductive traffic signal control
    Devailly, François-Xavier
    Larocque, Denis
    Charlin, Laurent
    arXiv, 2022,
  • [49] Model-Based Reinforcement Learning with Hierarchical Control for Dynamic Uncertain Environments
    Oesterdiekhoff, Annika
    Heinrich, Nils Wendel
    Russwinkel, Nele
    Kopp, Stefan
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2024, 2024, 1066 : 626 - 642
  • [50] Delay-aware model-based reinforcement learning for continuous control
    Chen, Baiming
    Xu, Mengdi
    Li, Liang
    Zhao, Ding
    NEUROCOMPUTING, 2021, 450 : 119 - 128