Measure upper bounds of nodal sets of Robin eigenfunctions

被引:0
|
作者
Liu, Fang [1 ]
Tian, Long [1 ]
Yang, Xiaoping [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Nodal set; Doubling index; Iteration procedure;
D O I
10.1007/s00209-023-03409-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will establish the upper bounds of the Hausdorff measure of nodal sets of eigenfunctions with the Robin boundary conditions, i.e.,{Delta u + lambda u = 0, in Omega,u(nu) + mu u = 0, on partial derivative Omega,where the domain Omega subset of R-n, u(nu )is the derivative of u along the outer normal direction on partial derivative Omega. We will show that, if Omega is bounded and analytic, and the corresponding eigenvalue lambda is large enough, then the measure upper bounds for the nodal sets of eigenfunctions are C root lambda, where C is a positive constant depending only on n and Omega but not on mu. We also show that, if partial derivative Omega is C-infinity smooth and partial derivative Omega\Gamma is piecewise analytic, where Gamma subset of partial derivative Omega is a union of some n- 2 dimensional submanifolds of partial derivative Omega, mu > 0, and lambda is large enough, then the corresponding measure upper bounds for the nodal sets of u are C(root lambda + mu(alpha) + mu(-c alpha)) for any alpha is an element of (0, 1), where C is a positive constant depending on alpha, n, Omega and Gamma, and c is a positive constant depending only on n.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Measure upper bounds of nodal sets of Robin eigenfunctions
    Fang Liu
    Long Tian
    Xiaoping Yang
    [J]. Mathematische Zeitschrift, 2024, 306
  • [2] Measure upper bounds for nodal sets of eigenfunctions of the bi-harmonic operator
    Tian, Long
    Yang, Xiaoping
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1936 - 1973
  • [3] HAUSDORFF MEASURE BOUNDS FOR NODAL SETS OF STEKLOV EIGENFUNCTIONS
    Decio, Stefano
    [J]. ANALYSIS & PDE, 2024, 17 (04): : 1237 - 1259
  • [4] Upper bounds of nodal sets for eigenfunctions of eigenvalue problems
    Lin, Fanghua
    Zhu, Jiuyi
    [J]. MATHEMATISCHE ANNALEN, 2022, 382 (3-4) : 1957 - 1984
  • [5] Upper bounds of nodal sets for eigenfunctions of eigenvalue problems
    Fanghua Lin
    Jiuyi Zhu
    [J]. Mathematische Annalen, 2022, 382 : 1957 - 1984
  • [6] Lower Bounds for Nodal Sets of Eigenfunctions
    Tobias H. Colding
    William P. Minicozzi
    [J]. Communications in Mathematical Physics, 2011, 306 : 777 - 784
  • [7] Lower Bounds for Nodal Sets of Eigenfunctions
    Colding, Tobias H.
    Minicozzi, William P., II
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (03) : 777 - 784
  • [8] Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure
    Logunov, Alexander
    [J]. ANNALS OF MATHEMATICS, 2018, 187 (01) : 221 - 239
  • [9] Boundary Doubling Inequality and Nodal sets of Robin and Neumann eigenfunctions
    Zhu, Jiuyi
    [J]. POTENTIAL ANALYSIS, 2023, 59 (01) : 375 - 407
  • [10] LOWER BOUNDS FOR INTERIOR NODAL SETS OF STEKLOV EIGENFUNCTIONS
    Sogge, Christopher D.
    Wang, Xing
    Zhu, Jiuyi
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4715 - 4722