Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

被引:70
|
作者
Logunov, Alexander [1 ,2 ,3 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[2] St Petersburg State Univ, Chebyshev Lab, St Petersburg, Russia
[3] Inst Adv Study, Olden Lane, Princeton, NJ 08540 USA
基金
欧盟地平线“2020”; 以色列科学基金会;
关键词
Harmonic functions; Laplace eigenfunctions; nodal sets; Yau's conjecture; doubling index; frequency; EQUATIONS;
D O I
10.4007/annals.2018.187.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact C-infinity-smooth Riemannian manifold of dimension n, n >= 3, and let phi lambda : Delta M phi lambda + lambda phi lambda = 0 denote the Laplace eigenfunction on M corresponding to the eigenvalue lambda. We show that Hn-1 ({phi lambda = 0}) <= C lambda(alpha), where alpha > 1/2 is a constant, which depends on n only, and C > 0 depends on M. This result is a consequence of our study of zero sets of harmonic functions on C-infinity-smooth Riemannian manifolds. We develop a technique of propagation of smallness for solutions of elliptic PDE that allows us to obtain local bounds from above for the volume of the nodal sets in terms of the frequency and the doubling index.
引用
收藏
页码:221 / 239
页数:19
相关论文
共 50 条
  • [1] Hausdorff measure of nodal sets of analytic Steklov eigenfunctions
    Zelditch, Steve
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) : 1821 - 1842
  • [2] Hausdorff measure of nodal sets of analytic Steklov eigenfunctions
    Zelditch, Steve
    [J]. MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) : 1821 - 1842
  • [3] HAUSDORFF MEASURE BOUNDS FOR NODAL SETS OF STEKLOV EIGENFUNCTIONS
    Decio, Stefano
    [J]. ANALYSIS & PDE, 2024, 17 (04):
  • [4] Measure upper bounds of nodal sets of Robin eigenfunctions
    Liu, Fang
    Tian, Long
    Yang, Xiaoping
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (01)
  • [5] Measure upper bounds of nodal sets of Robin eigenfunctions
    Fang Liu
    Long Tian
    Xiaoping Yang
    [J]. Mathematische Zeitschrift, 2024, 306
  • [6] The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions
    A. Logunov
    E. Malinnikova
    N. Nadirashvili
    F. Nazarov
    [J]. Geometric and Functional Analysis, 2021, 31 : 1219 - 1244
  • [7] The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions
    Logunov, A.
    Malinnikova, E.
    Nadirashvili, N.
    Nazarov, F.
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (05) : 1219 - 1244
  • [8] GEODESICS AND NODAL SETS OF LAPLACE EIGENFUNCTIONS ON HYPERBOLIC MANIFOLDS
    Judge, Chris
    Mondal, Sugata
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) : 4543 - 4550
  • [9] NODAL SETS AND GROWTH EXPONENTS OF LAPLACE EIGENFUNCTIONS ON SURFACES
    Roy-Fortin, Guillaume
    [J]. ANALYSIS & PDE, 2015, 8 (01): : 223 - 255
  • [10] Nodal sets of Laplace eigenfunctions under small perturbations
    Mayukh Mukherjee
    Soumyajit Saha
    [J]. Mathematische Annalen, 2022, 383 : 475 - 491