The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions

被引:7
|
作者
Logunov, A. [1 ,2 ]
Malinnikova, E. [3 ,4 ]
Nadirashvili, N. [5 ]
Nazarov, F. [6 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Geneva, Sect Math, Geneva, Switzerland
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] NTNU, Dept Math Sci, Trondheim, Norway
[5] CNRS, Inst Math Marseille, Marseille, France
[6] Kent State Univ, Dept Math, Kent, OH 44242 USA
关键词
Laplace eigenfunction; Nodal set; Lipschitz domain; UNIQUE CONTINUATION; DOMAINS;
D O I
10.1007/s00039-021-00581-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a bounded domain in R-n with C-1 boundary and let u(lambda) be a Dirichlet Laplace eigenfunction in Omega with eigenvalue lambda. We show that the (n - 1)-dimensional Hausdorff measure of the zero set of u(lambda) does not exceed C(Omega)root lambda. This result is new even for the case of domains with C-infinity-smooth boundary.
引用
收藏
页码:1219 / 1244
页数:26
相关论文
共 50 条