LOWER BOUNDS FOR INTERIOR NODAL SETS OF STEKLOV EIGENFUNCTIONS

被引:12
|
作者
Sogge, Christopher D. [1 ]
Wang, Xing [1 ,2 ]
Zhu, Jiuyi [1 ,3 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
COMPACT MANIFOLDS; HAUSDORFF MEASURE; OPERATORS;
D O I
10.1090/proc/13067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the interior nodal sets, Z(lambda) of Steklov eigenfunctions in an n-dimensional relatively compact manifold M with boundary and show that one has the lower bounds vertical bar Z(lambda)vertical bar = c(lambda) 2-n/2 2 for the size of its (n -1)-dimensional Hausdorff measure. The proof is based on a Dong-type identity and estimates for the gradient of Steklov eigenfunctions, similar to those in previous works of the first author and Zelditch.
引用
收藏
页码:4715 / 4722
页数:8
相关论文
共 50 条