Measure upper bounds of nodal sets of Robin eigenfunctions

被引:0
|
作者
Liu, Fang [1 ]
Tian, Long [1 ]
Yang, Xiaoping [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Nodal set; Doubling index; Iteration procedure;
D O I
10.1007/s00209-023-03409-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will establish the upper bounds of the Hausdorff measure of nodal sets of eigenfunctions with the Robin boundary conditions, i.e.,{Delta u + lambda u = 0, in Omega,u(nu) + mu u = 0, on partial derivative Omega,where the domain Omega subset of R-n, u(nu )is the derivative of u along the outer normal direction on partial derivative Omega. We will show that, if Omega is bounded and analytic, and the corresponding eigenvalue lambda is large enough, then the measure upper bounds for the nodal sets of eigenfunctions are C root lambda, where C is a positive constant depending only on n and Omega but not on mu. We also show that, if partial derivative Omega is C-infinity smooth and partial derivative Omega\Gamma is piecewise analytic, where Gamma subset of partial derivative Omega is a union of some n- 2 dimensional submanifolds of partial derivative Omega, mu > 0, and lambda is large enough, then the corresponding measure upper bounds for the nodal sets of u are C(root lambda + mu(alpha) + mu(-c alpha)) for any alpha is an element of (0, 1), where C is a positive constant depending on alpha, n, Omega and Gamma, and c is a positive constant depending only on n.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [21] Nodal sets of sums of eigenfunctions
    Jerison, D
    Lebeau, G
    HARMONIC ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS: ESSAYS IN HONOR OF ALBERTO P CALDERON, 1999, : 223 - 239
  • [22] On the nodal sets of toral eigenfunctions
    Bourgain, Jean
    Rudnick, Zeev
    INVENTIONES MATHEMATICAE, 2011, 185 (01) : 199 - 237
  • [23] The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions
    A. Logunov
    E. Malinnikova
    N. Nadirashvili
    F. Nazarov
    Geometric and Functional Analysis, 2021, 31 : 1219 - 1244
  • [24] Nodal sets of Steklov eigenfunctions
    Bellova, Katarina
    Lin, Fang-Hua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 2239 - 2268
  • [25] Nodal sets of Steklov eigenfunctions
    Katarína Bellová
    Fang-Hua Lin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2239 - 2268
  • [26] On the nodal sets of toral eigenfunctions
    Jean Bourgain
    Zeév Rudnick
    Inventiones mathematicae, 2011, 185 : 199 - 237
  • [27] EIGENFUNCTIONS WITH PRESCRIBED NODAL SETS
    Enciso, Alberto
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 197 - 211
  • [28] The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions
    Logunov, A.
    Malinnikova, E.
    Nadirashvili, N.
    Nazarov, F.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (05) : 1219 - 1244
  • [29] INTERSECTION BOUNDS FOR NODAL SETS OF PLANAR NEUMANN EIGENFUNCTIONS WITH INTERIOR ANALYTIC CURVES
    El-Hajj, Layan
    Toth, John A.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 100 (01) : 1 - 53