Filtering airborne LIDAR data by using fully convolutional networks

被引:3
|
作者
Varlik, Abdullah [1 ]
Uray, Firat [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Geomat Engn, Konya, Turkey
关键词
Lidar; Deep learning; Point clouds; Point cloud classification; Point cloud segmentation; Remote sensing; NEURAL-NETWORK; POINT CLOUDS; CLASSIFICATION; SEGMENTATION; ALGORITHM; AREAS;
D O I
10.1080/00396265.2021.1996798
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The classification of LIDAR point clouds has always been a challenging task. Classification refers to label each point in different categories, such as ground, vegetation or building. The success of deep learning techniques in image processing tasks have encouraged researchers to use deep neural networks for classification of LIDAR point clouds. In this paper, we proposed a U-Net based architecture capable of classifying LIDAR data. The results indicated that our network model achieved an average F1 score of 91% over all three classes (ground, vegetation and building) for our best model.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [41] A Progressive Plane Detection Filtering Method for Airborne LiDAR Data in Forested Landscapes
    Cai, Shangshu
    Liang, Xinlian
    Yu, Sisi
    FORESTS, 2023, 14 (03):
  • [42] Fusion of Hyperspectral Image and LiDAR Data and Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [43] Review on Airborne LiDAR Point Cloud Filtering
    Hui Zhenyang
    Cheng Penggen
    Guan Yunlan
    Nie Yunju
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (06)
  • [44] Slope adaptive based filtering for airborne LIDAR
    Yang, Xiao Yun
    Cen, Min Yi
    Liang, Xin
    VIBRATION, STRUCTURAL ENGINEERING AND MEASUREMENT II, PTS 1-3, 2012, 226-228 : 1999 - 2004
  • [45] A fast and optimal pathfinder using airborne LiDAR data
    Yermo, Miguel
    Rivera, Francisco F.
    Cabaleiro, Jose C.
    Vilarino, David L.
    Pena, Tomas F.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 183 : 482 - 495
  • [46] Investigating ancient agricultural field systems in Sweden from airborne LIDAR data by using convolutional neural network
    Kucukdemirci, Melda
    Landeschi, Giacomo
    Ohlsson, Mattias
    Dell'Unto, Nicolo
    ARCHAEOLOGICAL PROSPECTION, 2023, 30 (02) : 209 - 219
  • [47] Automatic Building Detection Using Airborne LIDAR Data
    Zhang Hao
    Zhang Yongsheng
    Liu Jun
    Ji Song
    2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 3, PROCEEDINGS, 2009, : 668 - 671
  • [48] Retrieving fPAR of maize canopy using artificial neural networks with airborne LiDAR and hyperspectral data
    Shi, Juncheng
    Wang, Cheng
    Xi, Xiaohuan
    Yang, Xuebo
    Wang, Jinliang
    Ding, Xue
    REMOTE SENSING LETTERS, 2020, 11 (11) : 1002 - 1011
  • [49] Tidal Creek Mapping from Airborne LiDAR Data Using Multi-resolution Cloth Simulation Filtering
    Kim, Hyejin
    Lee, Jaebin
    Kim, Yongil
    JOURNAL OF COASTAL RESEARCH, 2021, : 86 - 90
  • [50] Ground and Multi-Class Classification of Airborne Laser Scanner Point Clouds Using Fully Convolutional Networks
    Rizaldy, Aldino
    Persello, Claudio
    Gevaert, Caroline
    Elberink, Sander Oude
    Vosselman, George
    REMOTE SENSING, 2018, 10 (11)