Filtering airborne LIDAR data by using fully convolutional networks

被引:3
|
作者
Varlik, Abdullah [1 ]
Uray, Firat [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Geomat Engn, Konya, Turkey
关键词
Lidar; Deep learning; Point clouds; Point cloud classification; Point cloud segmentation; Remote sensing; NEURAL-NETWORK; POINT CLOUDS; CLASSIFICATION; SEGMENTATION; ALGORITHM; AREAS;
D O I
10.1080/00396265.2021.1996798
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The classification of LIDAR point clouds has always been a challenging task. Classification refers to label each point in different categories, such as ground, vegetation or building. The success of deep learning techniques in image processing tasks have encouraged researchers to use deep neural networks for classification of LIDAR point clouds. In this paper, we proposed a U-Net based architecture capable of classifying LIDAR data. The results indicated that our network model achieved an average F1 score of 91% over all three classes (ground, vegetation and building) for our best model.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [31] A Multiscale Filtering Method for Airborne LiDAR Data Using Modified 3D Alpha Shape
    Cao, Di
    Wang, Cheng
    Du, Meng
    Xi, Xiaohuan
    REMOTE SENSING, 2024, 16 (08)
  • [32] Comparing the Performance of Ground Filtering Algorithms for Terrain Modeling in a Forest Environment Using Airborne LiDAR Data
    Silva, Carlos Alberto
    Klauberg, Carine
    Klein Hentz, Angela Maria
    Dalla Corte, Ana Paula
    Ribeiro, Uelison
    Liesenberg, Veraldo
    FLORESTA E AMBIENTE, 2018, 25 (02):
  • [33] A Fast Progressive TIN Densification Filtering Algorithm for Airborne LiDAR Data Using Adjacent Surface Information
    Li, Hongfu
    Ye, Chengming
    Guo, Zixuan
    Wei, Ruilong
    Wang, Lixuan
    Li, Jonathan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12492 - 12503
  • [34] Extracting Urban Impervious Surface from WorldView-2 and Airborne LiDAR Data Using 3D Convolutional Neural Networks
    Zhongchang Sun
    Xiangwei Zhao
    Mengfan Wu
    Cuizhen Wang
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 401 - 412
  • [35] Extracting Urban Impervious Surface from WorldView-2 and Airborne LiDAR Data Using 3D Convolutional Neural Networks
    Sun, Zhongchang
    Zhao, Xiangwei
    Wu, Mengfan
    Wang, Cuizhen
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (03) : 401 - 412
  • [36] Progressive Filtering of Airborne LiDAR Point Clouds Using Graph Cuts
    He, Yuxiang
    Zhang, Chunsun
    Fraser, Clive S.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (08) : 2933 - 2944
  • [37] Automatic colorization using fully convolutional networks
    Zhuge, Jingjing
    Lin, Jiajun
    An, Wei
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (04)
  • [38] Speech Dereverberation Using Fully Convolutional Networks
    Ernst, Ori
    Chazan, Shlomo E.
    Gannot, Sharon
    Goldberger, Jacob
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 390 - 394
  • [39] Ear Detection Using Fully Convolutional Networks
    Wang, Sida
    Du, Yajun
    Huang, Zengxi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION (ICRCA 2017), 2017, : 50 - 55
  • [40] Detecting Sensitive Data with GANs and Fully Convolutional Networks
    Korytkowski, Marcin
    Nowak, Jakub
    Scherer, Rafal
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT I, 2023, 13995 : 273 - 283