Filtering airborne LIDAR data by using fully convolutional networks

被引:3
|
作者
Varlik, Abdullah [1 ]
Uray, Firat [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Geomat Engn, Konya, Turkey
关键词
Lidar; Deep learning; Point clouds; Point cloud classification; Point cloud segmentation; Remote sensing; NEURAL-NETWORK; POINT CLOUDS; CLASSIFICATION; SEGMENTATION; ALGORITHM; AREAS;
D O I
10.1080/00396265.2021.1996798
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The classification of LIDAR point clouds has always been a challenging task. Classification refers to label each point in different categories, such as ground, vegetation or building. The success of deep learning techniques in image processing tasks have encouraged researchers to use deep neural networks for classification of LIDAR point clouds. In this paper, we proposed a U-Net based architecture capable of classifying LIDAR data. The results indicated that our network model achieved an average F1 score of 91% over all three classes (ground, vegetation and building) for our best model.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [21] Airborne LiDAR point cloud filtering using saliency division
    Feng F.
    Ding Y.
    Li J.
    Huang X.
    Liu X.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2020, 49 (08):
  • [22] An improved plane fitting based filtering algorithm for airborne LIDAR data
    Chen, Lei
    Zhao, Shuhe
    Wang, An
    Luo, Yunxiao
    INTERNATIONAL SYMPOSIUM ON LIDAR AND RADAR MAPPING 2011: TECHNOLOGIES AND APPLICATIONS, 2011, 8286
  • [23] Airborne LiDAR Data Filtering Based on Geodesic Transformations of Mathematical Morphology
    Li, Yong
    Yong, Bin
    van Oosterom, Peter
    Lemmens, Mathias
    Wu, Huayi
    Ren, Liliang
    Zheng, Mingxue
    Zhou, Jiajun
    REMOTE SENSING, 2017, 9 (11):
  • [24] DEM Construction for Airborne LiDAR Data Based on Combined Filtering Algorithm
    Tian Xiangyong
    Hu Hong
    Xu Bangxin
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (10)
  • [25] Investigating performance of Airborne LiDAR data filtering algorithms for DTM generation
    Polat, Nizar
    Uysal, Murat
    MEASUREMENT, 2015, 63 : 61 - 68
  • [26] Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues
    Meng, Xuelian
    Currit, Nate
    Zhao, Kaiguang
    REMOTE SENSING, 2010, 2 (03) : 833 - 860
  • [27] Automatic morphological filtering algorithm for airborne lidar data in urban areas
    Hui, Zhenyang
    Wang, Leyang
    Ziggah, Yao Yevenyo
    Cai, Shangshu
    Xia, Yuanping
    APPLIED OPTICS, 2019, 58 (04) : 1164 - 1173
  • [28] Tree Annotations in LiDAR Data Using Point Densities and Convolutional Neural Networks
    Gupta, Ananya
    Byrne, Jonathan
    Moloney, David
    Watson, Simon
    Yin, Hujun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 971 - 981
  • [29] Neural networks for the generation of sea bed models using airborne lidar bathymetry data
    Kogut, Tomasz
    Niemeyer, Joachim
    Bujakiewicz, Aleksandra
    GEODESY AND CARTOGRAPHY, 2016, 65 (01): : 41 - 53
  • [30] BUILDING EXTRACTION FROM REMOTE SENSING DATA USING FULLY CONVOLUTIONAL NETWORKS
    Bittner, K.
    Cui, S.
    Reinartz, P.
    ISPRS HANNOVER WORKSHOP: HRIGI 17 - CMRT 17 - ISA 17 - EUROCOW 17, 2017, 42-1 (W1): : 481 - 486