Filtering airborne LIDAR data by using fully convolutional networks

被引:3
|
作者
Varlik, Abdullah [1 ]
Uray, Firat [1 ]
机构
[1] Necmettin Erbakan Univ, Dept Geomat Engn, Konya, Turkey
关键词
Lidar; Deep learning; Point clouds; Point cloud classification; Point cloud segmentation; Remote sensing; NEURAL-NETWORK; POINT CLOUDS; CLASSIFICATION; SEGMENTATION; ALGORITHM; AREAS;
D O I
10.1080/00396265.2021.1996798
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The classification of LIDAR point clouds has always been a challenging task. Classification refers to label each point in different categories, such as ground, vegetation or building. The success of deep learning techniques in image processing tasks have encouraged researchers to use deep neural networks for classification of LIDAR point clouds. In this paper, we proposed a U-Net based architecture capable of classifying LIDAR data. The results indicated that our network model achieved an average F1 score of 91% over all three classes (ground, vegetation and building) for our best model.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [1] Full-Waveform Airborne LiDAR Data Classification Using Convolutional Neural Networks
    Zorzi, Stefano
    Maset, Eleonora
    Fusiello, Andrea
    Crosilla, Fabio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 8255 - 8261
  • [2] Lidar Cloud Detection with Fully Convolutional Networks
    Cromwell, Erol
    Flynn, Donna
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 619 - 627
  • [3] Study of the Airborne LIDAR Data Filtering Methods
    Zhang, Yangyang
    Men, Linjie
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [4] Preprocessing algorithms for filtering airborne LiDAR data
    Wang, Minghua
    Zhang, Xiaohong
    Zeng, Tao
    Cheng, Xiaoqian
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University, 2010, 35 (02): : 224 - 227
  • [5] Preprocessing Algorithms for Filtering Airborne LiDAR Data
    Han, Xian-quan
    Zhang, Hui
    Jiang, Yu
    Zhou, Fang-fang
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, SIMULATION AND MODELLING (AMSM 2017), 2017, 162 : 155 - 159
  • [6] A Point-Based Fully Convolutional Neural Network for Airborne LiDAR Ground Point Filtering in Forested Environments
    Jin, Shichao
    Sun, Yanjun
    Zhao, Xiaoqian
    Hu, Tianyu
    Guo, Qinghua
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3958 - 3974
  • [7] Comparison of three algorithms for filtering airborne lidar data
    Zhang, K
    Whitman, D
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2005, 71 (03): : 313 - 324
  • [8] Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks
    Mayra, Janne
    Keski-Saari, Sarita
    Kivinen, Sonja
    Tanhuanpaa, Topi
    Hurskainen, Pekka
    Kullberg, Peter
    Poikolainen, Laura
    Viinikka, Arto
    Tuominen, Sakari
    Kumpula, Timo
    Vihervaara, Petteri
    REMOTE SENSING OF ENVIRONMENT, 2021, 256
  • [9] LIDAR-camera fusion for road detection using fully convolutional neural networks
    Caltagirone, Luca
    Bellone, Mauro
    Svensson, Lennart
    Wande, Mattias
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 111 : 125 - 131
  • [10] Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks
    Caltagirone, Luca
    Scheidegger, Samuel
    Svensson, Lennart
    Wahde, Mattias
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1019 - 1024