Polymeric Backbone Eutectogel Electrolytes for High-Energy Lithium-Ion Batteries

被引:3
|
作者
Kelchtermans, An-Sofie [1 ,3 ]
Joos, Bjorn [1 ,2 ,3 ]
De Sloovere, Dries [1 ,2 ,3 ]
Paulus, Andreas [1 ,2 ,3 ]
Mercken, Jonas [1 ,2 ,3 ]
Mylavarapu, Satish Kumar [1 ,2 ,3 ]
Elen, Ken [1 ,2 ,3 ]
Marchal, Wouter [4 ]
Tesfaye, Alexander [5 ]
Thompson, Travis [5 ]
Van Bael, Marlies K. [1 ,2 ,3 ]
Hardy, An [1 ,2 ,3 ]
机构
[1] Hasselt Univ, Inst Mat Res Imo Imomec, Mat Chem, DESINe Grp, B-3590 Diepenbeek, Belgium
[2] IMEC Vzw, Div Imomec Associated Lab, B-3590 Diepenbeek, Belgium
[3] EnergyVille, B-3600 Genk, Belgium
[4] Hasselt Univ, Inst Mat Res Imo Imomec, Mat Chem, Analyt & Circular Chem ACC, B-3590 Diepenbeek, Belgium
[5] Umicore, Corp Res & Dev, B-2230 Olen, Belgium
来源
ACS OMEGA | 2023年 / 8卷 / 40期
关键词
CATHODE MATERIALS; ELECTROCHEMICAL STABILITY; N-METHYLACETAMIDE; ROOM-TEMPERATURE; CAPACITY; PERFORMANCE; ELECTRODES; SOLVENTS; PROGRESS; LIQUIDS;
D O I
10.1021/acsomega.3c03081
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work introduces a polymeric backbone eutectogel (P-ETG) hybrid solid-state electrolyte with an N-isopropylacrylamide (NIPAM) backbone for high-energy lithium-ion batteries (LIBs). The NIPAM-based P-ETG is (electro)chemically compatible with commercially relevant positive electrode materials such as the nickel-rich layered oxide LiNi0.6Mn0.2Co0.2O2 (NMC622). The chemical compatibility was demonstrated through (physico)chemical characterization methods. The nonexistence (within detection limits) of interfacial reactions between the electrolyte and the positive electrode, the unchanged bulk crystallographic composition, and the absence of transition metal ions leaching from the positive electrode in contact with the electrolyte were demonstrated by Fourier transform infrared spectroscopy, powder X-ray diffraction, and elemental analysis, respectively. Moreover, the NIPAM-based P-ETG demonstrates a wide electrochemical stability window (1.5-5.0 V vs Li+/Li) and a reasonably high ionic conductivity at room temperature (0.82 mS cm(-1)). The electrochemical compatibility of a high-potential NMC622-containing positive electrode and the P-ETG is further demonstrated in Li|P-ETG|NMC622 cells, which deliver a discharge capacity of 134, 110, and 97 mAh g(-1) at C/5, C/2, and 1C, respectively, after 90 cycles. The Coulombic efficiency is >95% at C/5, C/2, and 1C. Hence, gaining scientific insights into the compatibility of the electrolytes with positive electrode materials that are relevant to the commercial market, like NMC622, is important because this requires going beyond the electrolyte design itself, which is essential to their practical applications.
引用
收藏
页码:36753 / 36763
页数:11
相关论文
共 50 条
  • [41] Solid-State Chemistries Stable with High-Energy Cathodes for Lithium-Ion Batteries
    Nolan, Adelaide M.
    Liu, Yunsheng
    Mo, Yifei
    ACS ENERGY LETTERS, 2019, 4 (10) : 2444 - 2451
  • [42] Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries
    Chae, Sujong
    Ko, Minseong
    Kim, Kyungho
    Ahn, Kihong
    Cho, Jaephil
    JOULE, 2017, 1 (01) : 47 - 60
  • [43] Mitigating thermal runaway hazard of high-energy lithium-ion batteries by poison agent
    Lai, Xin
    Meng, Zheng
    Zhang, Fangnan
    Peng, Yong
    Zhang, Weifeng
    Sun, Lei
    Wang, Li
    Gao, Fei
    Sheng, Jie
    Su, Shufa
    Zheng, Yuejiu
    Feng, Xuning
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 3 - 15
  • [44] Crystalline geometry engineering towards high-energy spinel cathode for lithium-ion batteries
    Chen, Zhanjun
    Li, Zhuohua
    Peng, Yangxi
    Wang, Tao
    Zhong, Hongbin
    Hu, Chuanyue
    Zhao, Ruirui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [45] Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries
    Hou, Junxian
    Feng, Xuning
    Wang, Li
    Liu, Xiang
    Ohma, Atsushi
    Lu, Languang
    Ren, Dongsheng
    Huang, Wensheng
    Li, Yan
    Yi, Mengchao
    Wang, Yu
    Ren, Jianqiao
    Meng, Zihan
    Chu, Zhengyu
    Xu, Gui-Liang
    Amine, Khalil
    He, Xiangming
    Wang, Hewu
    Nitta, Yoshiaki
    Ouyang, Minggao
    ENERGY STORAGE MATERIALS, 2021, 39 : 395 - 402
  • [46] Mitigating thermal runaway hazard of high-energy lithium-ion batteries by poison agent
    Xin Lai
    Zheng Meng
    Fangnan Zhang
    Yong Peng
    Weifeng Zhang
    Lei Sun
    Li Wang
    Fei Gao
    Jie Sheng
    Shufa Su
    Yuejiu Zheng
    Xuning Feng
    Journal of Energy Chemistry , 2023, (08) : 3 - 15
  • [47] Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries
    Wang, Jinglun
    Ran, Qin
    Han, Chongyu
    Tang, Zilong
    Chen, Qiduo
    Qin, Xueying
    PROGRESS IN CHEMISTRY, 2020, 32 (04) : 467 - 480
  • [48] Inorganic Solid Electrolytes for the Lithium-Ion Batteries
    Lu, Jiasheng
    Chen, Jiamiao
    He, Tianxian
    Zhao, Jingwei
    Liu, Jun
    Huo, Yanping
    PROGRESS IN CHEMISTRY, 2021, 33 (08) : 1344 - 1361
  • [49] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Yoon, Jeong Hoon
    Cho, Won-Jang
    Kang, Tae hui
    Lee, Minjae
    Yi, Gi-Ra
    MACROMOLECULAR RESEARCH, 2021, 29 (08) : 509 - 518
  • [50] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Jeong Hoon Yoon
    Won-Jang Cho
    Tae Hui Kang
    Minjae Lee
    Gi-Ra Yi
    Macromolecular Research, 2021, 29 : 509 - 518