Polymeric Backbone Eutectogel Electrolytes for High-Energy Lithium-Ion Batteries

被引:3
|
作者
Kelchtermans, An-Sofie [1 ,3 ]
Joos, Bjorn [1 ,2 ,3 ]
De Sloovere, Dries [1 ,2 ,3 ]
Paulus, Andreas [1 ,2 ,3 ]
Mercken, Jonas [1 ,2 ,3 ]
Mylavarapu, Satish Kumar [1 ,2 ,3 ]
Elen, Ken [1 ,2 ,3 ]
Marchal, Wouter [4 ]
Tesfaye, Alexander [5 ]
Thompson, Travis [5 ]
Van Bael, Marlies K. [1 ,2 ,3 ]
Hardy, An [1 ,2 ,3 ]
机构
[1] Hasselt Univ, Inst Mat Res Imo Imomec, Mat Chem, DESINe Grp, B-3590 Diepenbeek, Belgium
[2] IMEC Vzw, Div Imomec Associated Lab, B-3590 Diepenbeek, Belgium
[3] EnergyVille, B-3600 Genk, Belgium
[4] Hasselt Univ, Inst Mat Res Imo Imomec, Mat Chem, Analyt & Circular Chem ACC, B-3590 Diepenbeek, Belgium
[5] Umicore, Corp Res & Dev, B-2230 Olen, Belgium
来源
ACS OMEGA | 2023年 / 8卷 / 40期
关键词
CATHODE MATERIALS; ELECTROCHEMICAL STABILITY; N-METHYLACETAMIDE; ROOM-TEMPERATURE; CAPACITY; PERFORMANCE; ELECTRODES; SOLVENTS; PROGRESS; LIQUIDS;
D O I
10.1021/acsomega.3c03081
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work introduces a polymeric backbone eutectogel (P-ETG) hybrid solid-state electrolyte with an N-isopropylacrylamide (NIPAM) backbone for high-energy lithium-ion batteries (LIBs). The NIPAM-based P-ETG is (electro)chemically compatible with commercially relevant positive electrode materials such as the nickel-rich layered oxide LiNi0.6Mn0.2Co0.2O2 (NMC622). The chemical compatibility was demonstrated through (physico)chemical characterization methods. The nonexistence (within detection limits) of interfacial reactions between the electrolyte and the positive electrode, the unchanged bulk crystallographic composition, and the absence of transition metal ions leaching from the positive electrode in contact with the electrolyte were demonstrated by Fourier transform infrared spectroscopy, powder X-ray diffraction, and elemental analysis, respectively. Moreover, the NIPAM-based P-ETG demonstrates a wide electrochemical stability window (1.5-5.0 V vs Li+/Li) and a reasonably high ionic conductivity at room temperature (0.82 mS cm(-1)). The electrochemical compatibility of a high-potential NMC622-containing positive electrode and the P-ETG is further demonstrated in Li|P-ETG|NMC622 cells, which deliver a discharge capacity of 134, 110, and 97 mAh g(-1) at C/5, C/2, and 1C, respectively, after 90 cycles. The Coulombic efficiency is >95% at C/5, C/2, and 1C. Hence, gaining scientific insights into the compatibility of the electrolytes with positive electrode materials that are relevant to the commercial market, like NMC622, is important because this requires going beyond the electrolyte design itself, which is essential to their practical applications.
引用
收藏
页码:36753 / 36763
页数:11
相关论文
共 50 条
  • [21] Bifunctional electrolytes for lithium-ion batteries
    Rectenwald, Michael F.
    Shaffer, Andrew R.
    Protasiewicz, John D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [22] Electrolytes and additives for lithium-ion batteries
    Abraham, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [23] Nanodiamond-Enhanced Nanofiber Separators for High-Energy Lithium-Ion Batteries
    Narla, Aashray
    Fu, Wenbin
    Kulaksizoglu, Alp
    Kume, Atsushi
    Johnson, Billy R.
    Raman, Ashwin Sankara
    Wang, Fujia
    Magasinski, Alexandre
    Kim, Doyoub
    Kousa, Mohammed
    Xiao, Yiran
    Jhulki, Samik
    Turcheniuk, Kostiantyn
    Yushin, Gleb
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (27) : 32678 - 32686
  • [24] High-Energy Lithium-Ion Batteries:Recent Progress and a Promising Future in Applications
    Jingjing Xu
    Xingyun Cai
    Songming Cai
    Yaxin Shao
    Chao Hu
    Shirong Lu
    Shujiang Ding
    Energy & Environmental Materials, 2023, 6 (05) : 64 - 89
  • [25] Surface Modification of Silicon Anodes for Durable and High-Energy Lithium-Ion Batteries
    Son, Seoung-Bum
    Kappes, Branden
    Ban, Chunmei
    ISRAEL JOURNAL OF CHEMISTRY, 2015, 55 (05) : 558 - 569
  • [26] High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications
    Xu, Jingjing
    Cai, Xingyun
    Cai, Songming
    Shao, Yaxin
    Hu, Chao
    Lu, Shirong
    Ding, Shujiang
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (05)
  • [27] Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries
    Chae, Sujong
    Choi, Seong-Hyeon
    Kim, Namhyung
    Sung, Jaekyung
    Cho, Jaephil
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 110 - 135
  • [28] A Functional Prelithiation Separator Promises Sustainable High-Energy Lithium-Ion Batteries
    Meng, Qinghai
    Fan, Min
    Chang, Xin
    Li, Hongliang
    Wang, Wen-Peng
    Zhu, Yu-Hui
    Wan, Jing
    Zhao, Yao
    Wang, Fuyi
    Wen, Rui
    Xin, Sen
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2023, 13 (19)
  • [29] Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries
    Su, Chi-Cheung
    He, Meinan
    Redfern, Paul C.
    Curtiss, Larry A.
    Shkrob, Ilya A.
    Zhang, Zhengcheng
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (04) : 900 - 904
  • [30] Localized lithium plating under mild cycling conditions in high-energy lithium-ion batteries
    Smith, Alexander J.
    Fang, Yuan
    Mikheenkova, Anastasiia
    Ekstrom, Henrik
    Svens, Pontus
    Ahmed, Istaq
    Lacey, Matthew J.
    Lindbergh, Goran
    Furo, Istvan
    Lindstrom, Rakel Wreland
    JOURNAL OF POWER SOURCES, 2023, 573