Polymeric Backbone Eutectogel Electrolytes for High-Energy Lithium-Ion Batteries

被引:3
|
作者
Kelchtermans, An-Sofie [1 ,3 ]
Joos, Bjorn [1 ,2 ,3 ]
De Sloovere, Dries [1 ,2 ,3 ]
Paulus, Andreas [1 ,2 ,3 ]
Mercken, Jonas [1 ,2 ,3 ]
Mylavarapu, Satish Kumar [1 ,2 ,3 ]
Elen, Ken [1 ,2 ,3 ]
Marchal, Wouter [4 ]
Tesfaye, Alexander [5 ]
Thompson, Travis [5 ]
Van Bael, Marlies K. [1 ,2 ,3 ]
Hardy, An [1 ,2 ,3 ]
机构
[1] Hasselt Univ, Inst Mat Res Imo Imomec, Mat Chem, DESINe Grp, B-3590 Diepenbeek, Belgium
[2] IMEC Vzw, Div Imomec Associated Lab, B-3590 Diepenbeek, Belgium
[3] EnergyVille, B-3600 Genk, Belgium
[4] Hasselt Univ, Inst Mat Res Imo Imomec, Mat Chem, Analyt & Circular Chem ACC, B-3590 Diepenbeek, Belgium
[5] Umicore, Corp Res & Dev, B-2230 Olen, Belgium
来源
ACS OMEGA | 2023年 / 8卷 / 40期
关键词
CATHODE MATERIALS; ELECTROCHEMICAL STABILITY; N-METHYLACETAMIDE; ROOM-TEMPERATURE; CAPACITY; PERFORMANCE; ELECTRODES; SOLVENTS; PROGRESS; LIQUIDS;
D O I
10.1021/acsomega.3c03081
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work introduces a polymeric backbone eutectogel (P-ETG) hybrid solid-state electrolyte with an N-isopropylacrylamide (NIPAM) backbone for high-energy lithium-ion batteries (LIBs). The NIPAM-based P-ETG is (electro)chemically compatible with commercially relevant positive electrode materials such as the nickel-rich layered oxide LiNi0.6Mn0.2Co0.2O2 (NMC622). The chemical compatibility was demonstrated through (physico)chemical characterization methods. The nonexistence (within detection limits) of interfacial reactions between the electrolyte and the positive electrode, the unchanged bulk crystallographic composition, and the absence of transition metal ions leaching from the positive electrode in contact with the electrolyte were demonstrated by Fourier transform infrared spectroscopy, powder X-ray diffraction, and elemental analysis, respectively. Moreover, the NIPAM-based P-ETG demonstrates a wide electrochemical stability window (1.5-5.0 V vs Li+/Li) and a reasonably high ionic conductivity at room temperature (0.82 mS cm(-1)). The electrochemical compatibility of a high-potential NMC622-containing positive electrode and the P-ETG is further demonstrated in Li|P-ETG|NMC622 cells, which deliver a discharge capacity of 134, 110, and 97 mAh g(-1) at C/5, C/2, and 1C, respectively, after 90 cycles. The Coulombic efficiency is >95% at C/5, C/2, and 1C. Hence, gaining scientific insights into the compatibility of the electrolytes with positive electrode materials that are relevant to the commercial market, like NMC622, is important because this requires going beyond the electrolyte design itself, which is essential to their practical applications.
引用
收藏
页码:36753 / 36763
页数:11
相关论文
共 50 条
  • [31] High Performance Composite Polymer Electrolytes for Lithium-Ion Batteries
    Fan, Peng
    Liu, Hao
    Marosz, Vladimir
    Samuels, Nia T.
    Suib, Steven L.
    Sun, Luyi
    Liao, Libing
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (23)
  • [32] Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries
    Kalluri, Sujith
    Yoon, Moonsu
    Jo, Minki
    Liu, Hua Kun
    Dou, Shi Xue
    Cho, Jaephil
    Guo, Zaiping
    ADVANCED MATERIALS, 2017, 29 (48)
  • [33] A scalable silicon/graphite anode with high silicon content for high-energy lithium-ion batteries
    Yan, Zhilin
    Yi, Si
    Li, Xingda
    Jiang, Jingwei
    Yang, Deren
    Du, Ning
    MATERIALS TODAY ENERGY, 2023, 31
  • [34] Polyanthraquinone-Triazine-A Promising Anode Material for High-Energy Lithium-Ion Batteries
    Kang, Hongwei
    Liu, Huili
    Li, Chunxiao
    Sun, Li
    Zhang, Chaofeng
    Gao, Hongcai
    Yin, Jun
    Yang, Baocheng
    You, Ya
    Jiang, Ke-Cheng
    Long, Huijin
    Xin, Sen
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (43) : 37023 - 37030
  • [35] Crystalline geometry engineering towards high-energy spinel cathode for lithium-ion batteries
    Chen, Zhanjun
    Li, Zhuohua
    Peng, Yangxi
    Wang, Tao
    Zhong, Hongbin
    Hu, Chuanyue
    Zhao, Ruirui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 919
  • [36] Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries
    Chen, Chaoji
    Hu, Pei
    Hu, Xianluo
    Mei, Yueni
    Huang, Yunhui
    CHEMICAL COMMUNICATIONS, 2015, 51 (14) : 2798 - 2801
  • [37] DEVELOPMENT OF ION-CONDUCTING POLYMER ELECTROLYTES FOR USE IN HIGH-ENERGY LITHIUM RECHARGEABLE BATTERIES
    DUVAL, M
    GAUTHIER, M
    BELANGER, A
    HARVEY, PE
    KAPFER, B
    VASSORT, G
    MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA, 1989, 24 : 151 - 162
  • [38] A practical phosphorus-based anode material for high-energy lithium-ion batteries
    Amine, Rachid
    Daali, Amine
    Zhou, Xinwei
    Liu, Xiang
    Liu, Yuzi
    Ren, Yang
    Zhang, Xiaoyi
    Zhu, Likun
    Al-Hallaj, Said
    Chen, Zonghai
    Xu, Gui-Liang
    Amine, Khalil
    NANO ENERGY, 2020, 74
  • [39] Thermal Runaway Suppression of High-Energy Lithium-Ion Batteries by Designing the Stable Interphase
    Wu, Changjun
    Wu, Yu
    Yang, Xinying
    Xin, Tianjiao
    Chen, Siqi
    Yang, Min
    Peng, Yong
    Xu, Hui
    Yin, Yanli
    Deng, Tao
    Feng, Xuning
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [40] Ni-rich cathode materials for stable high-energy lithium-ion batteries
    Wu, Zhenzhen
    Zhang, Cheng
    Yuan, Fangfang
    Lyu, Miaoqiang
    Yang, Pan
    Zhang, Lei
    Zhou, Ming
    Wang, Liang
    Zhang, Shanqing
    Wang, Lianzhou
    NANO ENERGY, 2024, 126