Sum of powers of the Laplacian eigenvalues and the kirchhoff index of a graph

被引:0
|
作者
Hu, Mingying [1 ]
Chen, Haiyan [1 ]
Sun, Wenwen [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; Resistance distance; Kirchhoff index; First Zagreb index; Laplacian Estrada index; ENERGY-LIKE INVARIANT; RESISTANCE-DISTANCE; ESTRADA INDEX;
D O I
10.1016/j.amc.2023.127883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V = { 1 , 2 , . . . , n }. For any real number alpha, the topological index s(alpha)(G) of G is defined as s(alpha)(G) = Sigma(n-1) (i =1) mu(alpha) (i) , where mu(1) >= mu 2 >= . . . mu(n -1) >= mu(n) = 0 are the Laplacian eigenvalues of G . In this paper, we first express s alpha (G ) explicitly in terms of resistance distances Omega(ij), i, j is an element of V . Then we generalize the following well-known equality ns -1 (G ) = Kf(G) to any integer k >= -1 , where Kf(G) = Sigma(i<j) Omega(ij) is the Kirchhoff index of G . As by-products, we get the expressions for the first Zagreb index and the Laplacian Estrada index in terms of the resistance distances. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] EIGENVALUES OF LAPLACIAN OF A GRAPH
    ANDERSON, WM
    MORLEY, TD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A5 - &
  • [42] On Laplacian eigenvalues of a graph
    Zhou, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (03): : 181 - 184
  • [43] On a conjecture for the sum of Laplacian eigenvalues
    Wang, Shouzhong
    Huang, Yufei
    Liu, Bolian
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 56 (3-4) : 60 - 68
  • [44] On the sum of the Laplacian eigenvalues of a tree
    Fritscher, Eliseu
    Hoppen, Carlos
    Rocha, Israel
    Trevisan, Vilmar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 371 - 399
  • [45] On the sum of Laplacian eigenvalues of graphs
    Haemers, W. H.
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2214 - 2221
  • [46] On the Laplacian eigenvalues of a graph and Laplacian energy
    Pirzada, S.
    Ganie, Hilal A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 454 - 468
  • [47] On the sum of powers of the Aα-eigenvalues of graphs
    Lin, Zhen
    MATHEMATICAL MODELLING AND CONTROL, 2022, 2 (02): : 55 - 64
  • [48] On the sum of the distance signless Laplacian eigenvalues of a graph and some inequalities involving them
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Paul, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [49] Graph embeddings and Laplacian eigenvalues
    Guattery, S
    Miller, GL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) : 703 - 723
  • [50] On the distribution of Laplacian eigenvalues of a graph
    Ji Ming Guo
    Xiao Li Wu
    Jiong Ming Zhang
    Kun Fu Fang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2259 - 2268