On Laplacian eigenvalues of a graph

被引:15
|
作者
Zhou, B [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; line graph; bipartite graph;
D O I
10.1515/zna-2004-0310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Let G be a connected graph with n vertices and in edges. The Laplacian eigenvalues are denoted by mu(1) (G) greater than or equal to mu(2) (G) greater than or equal to(...)greater than or equal to mu(n-1) (G) > mu(n) (G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for mu(1) (G) + (...) + mu(k) (G) and lower bounds for mu(n-1) (G) + (...) + mu(n-k) (G) in terms of n and m, where 1 less than or equal to k less than or equal to n-2, and characterize the extremal cases. We also discuss a type of upper bounds for mu(1) (G) in terms of degree and 2-degree.
引用
下载
收藏
页码:181 / 184
页数:4
相关论文
共 50 条
  • [1] The Eigenvalues and Laplacian Eigenvalues of A Graph
    Wang, Haitang
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 337 - 341
  • [2] On the Laplacian eigenvalues of a graph
    Li, JS
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 305 - 307
  • [3] EIGENVALUES OF LAPLACIAN OF A GRAPH
    ANDERSON, WM
    MORLEY, TD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A5 - &
  • [4] On the Laplacian eigenvalues of a graph and Laplacian energy
    Pirzada, S.
    Ganie, Hilal A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 454 - 468
  • [5] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536
  • [6] Graph embeddings and Laplacian eigenvalues
    Guattery, S
    Miller, GL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) : 703 - 723
  • [7] On the distribution of Laplacian eigenvalues of a graph
    Ji Ming Guo
    Xiao Li Wu
    Jiong Ming Zhang
    Kun Fu Fang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2259 - 2268
  • [8] A note on Laplacian graph eigenvalues
    Merris, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 33 - 35
  • [9] On the Distribution of Laplacian Eigenvalues of a Graph
    Guo, Ji Ming
    Wu, Xiao Li
    Zhang, Jiong Ming
    Fang, Kun Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2259 - 2268