Laplacian eigenvalue;
Resistance distance;
Kirchhoff index;
First Zagreb index;
Laplacian Estrada index;
ENERGY-LIKE INVARIANT;
RESISTANCE-DISTANCE;
ESTRADA INDEX;
D O I:
10.1016/j.amc.2023.127883
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G = (V, E) be a simple connected graph with vertex set V = { 1 , 2 , . . . , n }. For any real number alpha, the topological index s(alpha)(G) of G is defined as s(alpha)(G) = Sigma(n-1) (i =1) mu(alpha) (i) , where mu(1) >= mu 2 >= . . . mu(n -1) >= mu(n) = 0 are the Laplacian eigenvalues of G . In this paper, we first express s alpha (G ) explicitly in terms of resistance distances Omega(ij), i, j is an element of V . Then we generalize the following well-known equality ns -1 (G ) = Kf(G) to any integer k >= -1 , where Kf(G) = Sigma(i<j) Omega(ij) is the Kirchhoff index of G . As by-products, we get the expressions for the first Zagreb index and the Laplacian Estrada index in terms of the resistance distances. (c) 2023 Elsevier Inc. All rights reserved.
机构:
Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
Tian, Gui-Xian
Huang, Ting-Zhu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
Huang, Ting-Zhu
Zhou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R ChinaUniv Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China