Sum of powers of the Laplacian eigenvalues and the kirchhoff index of a graph

被引:0
|
作者
Hu, Mingying [1 ]
Chen, Haiyan [1 ]
Sun, Wenwen [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; Resistance distance; Kirchhoff index; First Zagreb index; Laplacian Estrada index; ENERGY-LIKE INVARIANT; RESISTANCE-DISTANCE; ESTRADA INDEX;
D O I
10.1016/j.amc.2023.127883
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V = { 1 , 2 , . . . , n }. For any real number alpha, the topological index s(alpha)(G) of G is defined as s(alpha)(G) = Sigma(n-1) (i =1) mu(alpha) (i) , where mu(1) >= mu 2 >= . . . mu(n -1) >= mu(n) = 0 are the Laplacian eigenvalues of G . In this paper, we first express s alpha (G ) explicitly in terms of resistance distances Omega(ij), i, j is an element of V . Then we generalize the following well-known equality ns -1 (G ) = Kf(G) to any integer k >= -1 , where Kf(G) = Sigma(i<j) Omega(ij) is the Kirchhoff index of G . As by-products, we get the expressions for the first Zagreb index and the Laplacian Estrada index in terms of the resistance distances. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] On the Sum of the Powers of Distance Signless Laplacian Eigenvalues of Graphs
    S. Pirzada
    Hilal A. Ganie
    A. Alhevaz
    M. Baghipur
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1143 - 1163
  • [22] A note on sum of powers of the Laplacian eigenvalues of bipartite graphs
    Tian, Gui-Xian
    Huang, Ting-Zhu
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2503 - 2510
  • [23] Remarks on the sum of powers of normalized signless Laplacian eigenvalues of graphs
    Altindag, Serife Burcu Bozkurt
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    FILOMAT, 2023, 37 (28) : 9487 - 9496
  • [24] New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs
    Clemente, Gian Paolo
    Cornaro, Alessandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 403 - 413
  • [25] On Sum of Powers of Normalized Laplacian Eigenvalues and Resistance Distances of Graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    SSRN, 2022,
  • [26] On sum of powers of normalized Laplacian eigenvalues and resistance distances of graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 179 - 186
  • [27] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [28] Note on an upper bound for sum of the Laplacian eigenvalues of a graph
    Chen, Xiaodan
    Li, Jingjian
    Fan, Yingmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 : 258 - 265
  • [29] On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture
    Ganie, Hilal A.
    Alghamdi, Ahmad M.
    Pirzada, S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 : 376 - 389
  • [30] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)