Analysis and numerical simulation of a reaction-diffusion mathematical model of atherosclerosis

被引:0
|
作者
Mukherjee, Debasmita [1 ]
Mukherjee, Avishek [2 ]
机构
[1] SVKMs NMIMS Deemed Univ, Nilkamal Sch Math, Appl Stat & Analyt, Mumbai, India
[2] Tata Consultancy Serv, Kolkata, India
关键词
Atherosclerosis; Reaction-diffusion system; Global stability; Hopf bifurcation;
D O I
10.1007/s40808-022-01664-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atherosclerosis is a chronic inflammatory disease which occurs due to plaque accumulation in the intima, the innermost layer of the artery. In this paper, a simple reaction-diffusion mathematical model of the plaque formation process comprising of oxidized LDL and macrophages has been developed. Linear stability analysis of the non-spatial model leads to the existence of global stability of the kinetic system. This reveals that the non-spatial system can withstand a substantial change in the significant model parameter values which can be taken forward for further clinical investigations. Numerical bifurcation analysis of the non-spatial system confirms the existence of Hopf bifurcation with respect to two significant model parameters. The biological importance of these bifurcation diagrams is discussed in detail. The significance of the model presented in this research paper provides a clear insight into the role of the key constituents, oxidized LDL and macrophages, involved in the plaque-forming process.
引用
收藏
页码:3517 / 3526
页数:10
相关论文
共 50 条
  • [31] A reaction-diffusion system of λ-ω type -: Part I:: Mathematical analysis
    Blowey, JF
    Garvie, MR
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 : 1 - 19
  • [32] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [33] Numerical Simulation of Heterogeneous Steady States for a Reaction-Diffusion Degenerate Keller-Segel Model
    Chamoun, Georges
    Ibrahim, Moustafa
    Saad, Mazen
    Talhouk, Raafat
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2018, 2019, 30 : 411 - 417
  • [34] Numerical simulation of Turing patterns in a fractional hyperbolic reaction-diffusion model with Grünwald differences
    J. E. Macías-Díaz
    Ahmed S. Hendy
    The European Physical Journal Plus, 134
  • [35] Validation of numerical solution of diffusive part in a reaction-diffusion model
    Herrera-Hernandez, E. C.
    Nunez-Lopez, M.
    Gonzalez-Calderdon, J. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (01) : 143 - 156
  • [36] A Meshfree Technique for Numerical Simulation of Reaction-Diffusion Systems in Developmental Biology
    Jannesari, Zahra
    Tatari, Mehdi
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (05) : 1225 - 1249
  • [37] A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
    Toubaei, S.
    Garshasbi, M.
    Jalalvand, M.
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2016, 4 (02): : 116 - 127
  • [38] Periodic pattern formation in reaction-diffusion systems: An introduction for numerical simulation
    Miura T.
    Maini P.K.
    Anatomical Science International, 2004, 79 (3) : 112 - 123
  • [39] Numerical simulation to capture the pattern formation of coupled reaction-diffusion models
    Jiwari, Ram
    Singh, Sukhveer
    Kumar, Ajay
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 422 - 439
  • [40] Analysis and numerical simulation of cross reaction-diffusion systems with the Caputo-Fabrizio and Riesz operators
    Owolabi, Kolade M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) : 1915 - 1937