Analysis and numerical simulation of a reaction-diffusion mathematical model of atherosclerosis

被引:0
|
作者
Mukherjee, Debasmita [1 ]
Mukherjee, Avishek [2 ]
机构
[1] SVKMs NMIMS Deemed Univ, Nilkamal Sch Math, Appl Stat & Analyt, Mumbai, India
[2] Tata Consultancy Serv, Kolkata, India
关键词
Atherosclerosis; Reaction-diffusion system; Global stability; Hopf bifurcation;
D O I
10.1007/s40808-022-01664-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atherosclerosis is a chronic inflammatory disease which occurs due to plaque accumulation in the intima, the innermost layer of the artery. In this paper, a simple reaction-diffusion mathematical model of the plaque formation process comprising of oxidized LDL and macrophages has been developed. Linear stability analysis of the non-spatial model leads to the existence of global stability of the kinetic system. This reveals that the non-spatial system can withstand a substantial change in the significant model parameter values which can be taken forward for further clinical investigations. Numerical bifurcation analysis of the non-spatial system confirms the existence of Hopf bifurcation with respect to two significant model parameters. The biological importance of these bifurcation diagrams is discussed in detail. The significance of the model presented in this research paper provides a clear insight into the role of the key constituents, oxidized LDL and macrophages, involved in the plaque-forming process.
引用
收藏
页码:3517 / 3526
页数:10
相关论文
共 50 条
  • [21] Stability analysis and numerical simulations of the infection spread of epidemics as a reaction-diffusion model
    Hariharan, S.
    Shangerganesh, L.
    Manimaran, J.
    Hendy, A. S.
    Zaky, Mahmoud A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10068 - 10090
  • [22] Mathematical Analysis and Numerical Simulations for a Model of Atherosclerosis
    Silva, Telma
    Tiago, Jorge
    Sequeira, Adelia
    MATHEMATICAL FLUID DYNAMICS, PRESENT AND FUTURE, 2016, 183 : 577 - 595
  • [23] Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation
    Kabir, M. Humayun
    Gani, M. Osman
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [24] Numerical analysis of a reaction-diffusion susceptible-infected-susceptible epidemic model
    Liu, X.
    Yang, Z. W.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [25] Stability analysis of spatiotemporal reaction-diffusion mathematical model incorporating the varicella virus transmission
    Hariharan, S.
    Shangerganesh, L.
    Debbouche, A.
    Antonov, V.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (12):
  • [26] Numerical analysis of the global identifiability of reaction-diffusion systems
    Vikhansky, A.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (10) : 1978 - 1982
  • [27] Structure Preserving Numerical Analysis of Reaction-Diffusion Models
    Ahmed, Nauman
    Rehman, Muhammad Aziz-ur
    Adel, Waleed
    Jarad, Fahd
    Ali, Mubasher
    Rafiq, Muhammad
    Akgul, Ali
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [28] Reliable numerical analysis for stochastic reaction-diffusion system
    Yasin, Muhammad W.
    Ahmed, Nauman
    Iqbal, Muhammad Sajid
    Rafiq, Muhammad
    Raza, Ali
    Akgul, Ali
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [29] Numerical Solution of Reaction-Diffusion Equations with Convergence Analysis
    Heidari, M.
    Ghovatmand, M.
    Skandari, M. H. Noori
    Baleanu, D.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (02) : 384 - 399
  • [30] Reaction-diffusion model for A + A reaction
    Univ of California, La Jolla, United States
    J Phys Chem, 19 (7542-7556):