General Position Polynomials

被引:1
|
作者
Irsic, Vesna [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rus, Gregor [1 ,2 ]
Tuite, James [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Sch Math & Stat, Milton Keynes, England
关键词
General position set; general position number; general position polynomial; unimodality; tree; Cartesian product of graphs; Kneser graph;
D O I
10.1007/s00025-024-02133-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset of vertices of a graph G is a general position set if no triple of vertices from the set lie on a common shortest path in G. In this paper we introduce the general position polynomial as n-ary sumation i >= 0aixi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i \ge 0} a_i x<^>i$$\end{document}, where ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} is the number of distinct general position sets of G with cardinality i. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs K(n, 2), with unimodal general position polynomials are presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Testing polynomials over general fields
    Kaufman, Tali
    Ron, Dana
    SIAM JOURNAL ON COMPUTING, 2006, 36 (03) : 779 - 802
  • [42] Irreducibility of random polynomials: general measures
    Lior Bary-Soroker
    Dimitris Koukoulopoulos
    Gady Kozma
    Inventiones mathematicae, 2023, 233 : 1041 - 1120
  • [43] Quantum gradient algorithm for general polynomials
    Gao, Pan
    Li, Keren
    Wei, Shijie
    Gao, Jiancun
    Long, Guilu
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [44] On the fractional calculus of a general class of polynomials
    Banerji, PK
    Choudhary, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (07): : 675 - 679
  • [45] Zero Points of General Quaternionic Polynomials
    Janovska, Drahoslava
    Opfer, Gerhard
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 554 - 557
  • [47] POSITION OF ZEROS OF A CLASS OF INTEGRAL POLYNOMIALS AND INTEGRAL FUNCTIONS
    BOZHOROV, E
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1977, 30 (07): : 973 - 975
  • [48] Circular General Position Solution
    Schmeichel, Edward
    Chapman, R.
    Ionin, Y. J.
    Lossers, O. P.
    Monea, M.
    Prasad, M. A.
    Smith, J. C.
    Stong, R.
    Weinstein, E. A.
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (01): : 86 - 86
  • [49] GENERAL POSITION OF EQUIVARIANT MAPS
    BIERSTONE, E
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) : 447 - 466
  • [50] Distinct angles in general position
    Fleischmann, Henry L.
    Konyagin, Sergei V.
    Miller, Steven J.
    Palsson, Eyvindur A.
    Pesikoff, Ethan
    Wolf, Charles
    DISCRETE MATHEMATICS, 2023, 346 (04)