General Position Polynomials

被引:1
|
作者
Irsic, Vesna [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rus, Gregor [1 ,2 ]
Tuite, James [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Sch Math & Stat, Milton Keynes, England
关键词
General position set; general position number; general position polynomial; unimodality; tree; Cartesian product of graphs; Kneser graph;
D O I
10.1007/s00025-024-02133-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset of vertices of a graph G is a general position set if no triple of vertices from the set lie on a common shortest path in G. In this paper we introduce the general position polynomial as n-ary sumation i >= 0aixi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i \ge 0} a_i x<^>i$$\end{document}, where ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} is the number of distinct general position sets of G with cardinality i. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs K(n, 2), with unimodal general position polynomials are presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Circular General Position
    Lagarias, Jeffrey C.
    Arbor, Ann
    Luo, Yusheng
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (01): : 85 - 85
  • [22] The position of general practice
    不详
    LANCET, 1920, 2 : 79 - 79
  • [23] Irreducibility of random polynomials: general measures
    Bary-Soroker, Lior
    Koukoulopoulos, Dimitris
    Kozma, Gady
    INVENTIONES MATHEMATICAE, 2023, 233 (03) : 1041 - 1120
  • [24] SOME PROPERTIES OF GENERAL LUCAS POLYNOMIALS
    WILLIAMS, HC
    MATRIX AND TENSOR QUARTERLY, 1971, 21 (03): : 91 - &
  • [25] The abstract polynomials in the general vectorial spaces
    Van der Lyn, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1938, 207 : 516 - 517
  • [26] A CIRCULAR STABILITY TEST FOR GENERAL POLYNOMIALS
    BISTRITZ, Y
    SYSTEMS & CONTROL LETTERS, 1986, 7 (02) : 89 - 97
  • [27] A GENERAL DIFFERENTIAL EQUATION FOR CLASSICAL POLYNOMIALS
    AGRAWAL, BD
    KHANNA, IK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (03) : 646 - &
  • [28] A GENERAL FACTORIZATION METHOD FOR MULTIVARIABLE POLYNOMIALS
    MASTORAKIS, NE
    THEODOROU, NJ
    TZAFESTAS, SG
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1994, 5 (02) : 151 - 178
  • [29] Relative Asymptotics for General Orthogonal Polynomials
    Simanek, Brian
    MICHIGAN MATHEMATICAL JOURNAL, 2017, 66 (01) : 175 - 193
  • [30] Mastrovito multiplier for general irreducible polynomials
    Halbutogullari, A
    Koç, CK
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 498 - 507