General Position Polynomials

被引:1
|
作者
Irsic, Vesna [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rus, Gregor [1 ,2 ]
Tuite, James [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Sch Math & Stat, Milton Keynes, England
关键词
General position set; general position number; general position polynomial; unimodality; tree; Cartesian product of graphs; Kneser graph;
D O I
10.1007/s00025-024-02133-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset of vertices of a graph G is a general position set if no triple of vertices from the set lie on a common shortest path in G. In this paper we introduce the general position polynomial as n-ary sumation i >= 0aixi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i \ge 0} a_i x<^>i$$\end{document}, where ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} is the number of distinct general position sets of G with cardinality i. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs K(n, 2), with unimodal general position polynomials are presented.
引用
收藏
页数:16
相关论文
共 50 条