General Position Polynomials

被引:1
|
作者
Irsic, Vesna [1 ,2 ]
Klavzar, Sandi [1 ,2 ,3 ]
Rus, Gregor [1 ,2 ]
Tuite, James [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[4] Open Univ, Sch Math & Stat, Milton Keynes, England
关键词
General position set; general position number; general position polynomial; unimodality; tree; Cartesian product of graphs; Kneser graph;
D O I
10.1007/s00025-024-02133-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset of vertices of a graph G is a general position set if no triple of vertices from the set lie on a common shortest path in G. In this paper we introduce the general position polynomial as n-ary sumation i >= 0aixi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i \ge 0} a_i x<^>i$$\end{document}, where ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_i$$\end{document} is the number of distinct general position sets of G with cardinality i. The polynomial is considered for several well-known classes of graphs and graph operations. It is shown that the polynomial is not unimodal in general, not even on trees. On the other hand, several classes of graphs, including Kneser graphs K(n, 2), with unimodal general position polynomials are presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] General Position Polynomials
    Vesna Iršič
    Sandi Klavžar
    Gregor Rus
    James Tuite
    Results in Mathematics, 2024, 79
  • [2] POSITION OF ZEROS IN POLYNOMIALS
    KUHN, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1968, 233 : 103 - &
  • [3] ON GENERAL POLYNOMIALS
    WILLIAMS, KS
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (04): : 579 - &
  • [4] THE POSITION OF THE (E)-POINTS OF POLYNOMIALS OF BEST APPROXIMATION POLYNOMIALS
    PASHKOVSKY, SF
    DOKLADY AKADEMII NAUK SSSR, 1957, 117 (04): : 576 - 577
  • [5] General quantum polynomials
    Artamonov, VA
    ALGEBRA, 2000, : 35 - 48
  • [6] On the strength of general polynomials
    Bik, Arthur
    Oneto, Alessandro
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6114 - 6140
  • [7] The general position avoidance game and hardness of general position games
    Chandran, S. V. Ullas
    Klavzar, Sandi
    Neethu, P. K.
    Sampaio, Rudini
    THEORETICAL COMPUTER SCIENCE, 2024, 988
  • [8] A GENERAL TRANSFORMATION FOR ORTHOGONAL POLYNOMIALS
    DICKINSO.D
    BARRUCAN.P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (24): : 1469 - &
  • [9] General Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    Ronveaux, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 614 - 634
  • [10] A GENERAL SYSTEM OF ORTHOGONAL POLYNOMIALS
    WYNN, P
    QUARTERLY JOURNAL OF MATHEMATICS, 1967, 18 (69): : 81 - &