Deep learning prediction of galaxy stellar populations in the low-redshift Universe

被引:1
|
作者
Wang, Li-Li [1 ]
Yang, Guang-Jun [1 ]
Zhang, Jun-Liang [1 ]
Rong, Li-Xia [1 ]
Zheng, Wen-Yan [1 ]
Liu, Cong [1 ]
Chen, Zong-Yi [1 ]
机构
[1] Dezhou Univ, Sch Comp & Informat, Dezhou 253023, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; techniques: spectroscopic; galaxies: stellar content; STAR-FORMATION; PHOTOMETRIC REDSHIFTS; NEURAL-NETWORKS; LINE SPECTRA; MODELS; DISTRIBUTIONS; METALLICITY; PARAMETERS; RESOLUTION; HISTORIES;
D O I
10.1093/mnras/stad3756
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The increasing size and complexity of data provided by both ongoing and planned galaxy surveys greatly contribute to our understanding of galaxy evolution. Deep learning methods are particularly well suited for handling the complex and massive data. We train a convolutional neural network (CNN) to simultaneously predict the stellar populations in galaxies: age, metallicity, colour excess E(B - V), and central velocity dispersion (VD) using spectra with redshift <= 0.3 from the Sloan Digital Sky Survey. This is the first time to use spectra based on deep learning to derive the four galaxy properties. The testing results show that our CNN predictions of galaxy properties are in good consistent with values by the traditional stellar population synthesis method with little scatters (0.11 dex for age and metallicity, 0.018 mag for E(B - V), and 31 km s(-1) for VD). In terms of the computational time, our method reduces by more than 10 times compared to traditional method. We further evaluate the performance of our CNN prediction model using spectra with different signal-to-noise ratios (S/Ns), redshifts, and spectral classes. We find that our model generally exhibits good performance, although the errors at different S/Ns, redshifts, and spectral classes vary slightly. Our well-trained CNN model and related codes are publicly available on https://github.com/sddzwll/CNNforStellarp.
引用
收藏
页码:10557 / 10563
页数:7
相关论文
共 50 条
  • [31] Morphological and dynamical properties of low-redshift two degree field galaxy redshift survey groups
    Plionis, M.
    Basilakos, S.
    Ragone-Figueroa, C.
    ASTROPHYSICAL JOURNAL, 2006, 650 (02): : 770 - 776
  • [32] Resolved stellar populations and the history of galaxy evolution in the nearby universe
    Grebel, EK
    HUBBLE'S SCIENCE LEGACY: FUTURE OPTICAL/ULTRAVIOLET ASTRONOMY FROM SPACE, 2003, 291 : 140 - 147
  • [33] The galaxy-subhalo connection in low-redshift galaxy clusters from weak gravitational lensing
    Sifon, Cristobal
    Herbonnet, Ricardo
    Hoekstra, Henk
    van der Burg, Remco F. J.
    Viola, Massimo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (01) : 1244 - 1264
  • [34] THE INFRARED PROTOGALAXY CANDIDATE IN SA-57 - A LOW-REDSHIFT ELLIPTICAL GALAXY
    LILLY, SJ
    GARDNER, JP
    COWIE, LL
    MCLEAN, IS
    ASTROPHYSICAL JOURNAL, 1988, 332 (02): : L59 - L61
  • [35] ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES
    Burbidge, G.
    Napier, W. M.
    ASTROPHYSICAL JOURNAL, 2009, 706 (01): : 657 - 664
  • [36] THE EMISSION-LINE PROPERTIES OF LOW-REDSHIFT QUASI-STELLAR OBJECTS
    BOROSON, TA
    GREEN, RF
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1992, 80 (01): : 109 - 135
  • [37] ABSORPTION-LINES IN SPECTRA OF LOW-REDSHIFT QUASI-STELLAR OBJECTS
    PETERSON, BM
    STRITTMATTER, PA
    ASTROPHYSICAL JOURNAL, 1978, 226 (01): : 21 - 25
  • [38] Connecting Optical Morphology, Environment, and HiMass Fraction for Low-redshift Galaxies Using Deep Learning
    Wu, John F.
    ASTROPHYSICAL JOURNAL, 2020, 900 (02):
  • [39] Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers
    Moresco, Michele
    Jimenez, Raul
    Cimatti, Andrea
    Pozzetti, Lucia
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (03):
  • [40] Discovery of the afterglow and host galaxy of the low-redshift short GRB 080905A
    Rowlinson, A.
    Wiersema, K.
    Levan, A. J.
    Tanvir, N. R.
    O'Brien, P. T.
    Rol, E.
    Hjorth, J.
    Thoene, C. C.
    Postigo, A. de Ugarte
    Fynbo, J. P. U.
    Jakobsson, P.
    Pagani, C.
    Stamatikos, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (01) : 383 - 391