Connecting Optical Morphology, Environment, and HiMass Fraction for Low-redshift Galaxies Using Deep Learning

被引:10
|
作者
Wu, John F. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA
[2] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
来源
ASTROPHYSICAL JOURNAL | 2020年 / 900卷 / 02期
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Galaxies; Galaxy evolution; Galaxy processes; Galaxy environments; Interstellar atomic gas; Interstellar medium; Astronomy data analysis; Astronomy data modeling; Astronomy data visualization; Convolutional neural networks; Neural networks; STAR-FORMING GALAXIES; CONVOLUTIONAL NEURAL-NETWORKS; ARECIBO SDSS SURVEY; SCALING RELATIONS; MASS; HI; METALLICITY; HYDROGEN; STELLAR; I;
D O I
10.3847/1538-4357/abacbb
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A galaxy's morphological features encode details about its gas content, star formation history, and feedback processes, which play important roles in regulating its growth and evolution. We use deep convolutional neural networks (CNNs) to learn a galaxy's optical morphological information in order to estimate its neutral atomic hydrogen (H I) content directly from Sloan Digital Sky Survey (SDSS) gri image cutouts. We are able to accurately predict a galaxy's logarithmic H I mass fraction, M equivalent to log(M-H I/M-star), by training a CNN on galaxies in the Arecibo Legacy Fast ALFA Survey (ALFALFA) 40% sample. Using pattern recognition, we remove galaxies with unreliable. estimates. We test CNN predictions on the ALFALFA 100%, extended Galaxy Evolution Explorer Arecibo SDSS Survey, and Nancay Interstellar Baryons Legacy Extragalactic Survey catalogs, and find that the CNN consistently outperforms previous estimators. The H I-morphology connection learned by the CNN appears to be constant in low- to intermediate-density galaxy environments, but it breaks down in the highest-density environments. We also use a visualization algorithm, Gradient-weighted Class Activation Maps, to determine which morphological features are associated with low or high gas content. These results demonstrate that CNNs are powerful tools for understanding the connections between optical morphology and other properties, as well as for probing other variables, in a quantitative and interpretable manner.
引用
收藏
页数:18
相关论文
共 31 条
  • [1] Optical/ultraviolet morphology and alignment of low-redshift radio galaxies
    Roche, N
    Eales, SA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 317 (01) : 120 - 140
  • [2] THE ENVIRONMENT OF BARRED GALAXIES IN THE LOW-REDSHIFT UNIVERSE
    Lin, Ye
    Sodi, Bernardo Cervantes
    Li, Cheng
    Wang, Lixin
    Wang, Enci
    ASTROPHYSICAL JOURNAL, 2014, 796 (02):
  • [3] RADIO AND OPTICAL MORPHOLOGY OF LOW-REDSHIFT QUASARS
    GOWER, AC
    HUTCHINGS, JB
    ASTRONOMICAL JOURNAL, 1984, 89 (11): : 1658 - 1687
  • [4] The fraction of early-type galaxies in low-redshift groups and clusters of galaxies
    Hoyle, Ben
    Masters, Karen L.
    Nichol, Robert C.
    Jimenez, Raul
    Bamford, Steven P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 423 (04) : 3478 - 3485
  • [5] The environment and characteristics of low-redshift galaxies detected by the Herschel-ATLAS
    Dariush, A.
    Cortese, L.
    Eales, S.
    Pascale, E.
    Smith, M. W. L.
    Dunne, L.
    Dye, S.
    Scott, D.
    Auld, R.
    Baes, M.
    Bland-Hawthorn, J.
    Buttiglione, S.
    Cava, A.
    Clements, D. L.
    Cooray, A.
    DeZotti, G.
    Driver, S.
    Fritz, J.
    Gomez, H. L.
    Hopkins, A.
    Hopwood, R.
    Ivison, R. J.
    Jarvis, M. J.
    Jones, D. H.
    Kelvin, L.
    Khosroshahi, H. G.
    Liske, J.
    Loveday, J.
    Maddox, S.
    Madore, B. F.
    Michalowski, M. J.
    Norberg, P.
    Phillipps, S.
    Pohlen, M.
    Popescu, C. C.
    Prescott, M.
    Rigby, E.
    Robotham, A.
    Rodighiero, G.
    Seibert, M.
    Smith, D. J. B.
    Temi, P.
    Tuffs, R. J.
    van der Werf, P. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (01) : 64 - 73
  • [6] Probing the CGM of low-redshift dwarf galaxies using FIRE simulations
    Li, Fei
    Rahman, Mubdi
    Murray, Norman
    Hafen, Zachary
    Faucher-Giguere, Claude-Andre
    Stern, Jonathan
    Hummels, Cameron B.
    Hopkins, Philip F.
    El-Badry, Kareem
    Keres, Dusan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 500 (01) : 1038 - 1053
  • [7] Deep learning prediction of galaxy stellar populations in the low-redshift Universe
    Wang, Li-Li
    Yang, Guang-Jun
    Zhang, Jun-Liang
    Rong, Li-Xia
    Zheng, Wen-Yan
    Liu, Cong
    Chen, Zong-Yi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 10557 - 10563
  • [8] Star-forming galaxies in low-redshift clusters: Effects of environment on the concentration of star formation
    Bretherton, C. F.
    Moss, C.
    James, P. A.
    ASTRONOMY & ASTROPHYSICS, 2013, 553
  • [9] Morphology and Interaction of Galaxies using Deep Learning
    Caro, Fernando
    Huertas-Company, Marc
    Cabrera, Guillermo
    ASTROINFORMATICS, 2017, 12 (S325): : 205 - 208
  • [10] 1ST RESULTS FROM A DEEP SPECTROSCOPIC SURVEY OF FAINT RED GALAXIES - CLUES ON THE NATURE OF LOW-REDSHIFT DWARF GALAXIES
    TRESSE, L
    HAMMER, F
    LEFEVRE, O
    PROUST, D
    ASTRONOMY & ASTROPHYSICS, 1993, 277 (01) : 53 - 61