Deep learning prediction of galaxy stellar populations in the low-redshift Universe

被引:1
|
作者
Wang, Li-Li [1 ]
Yang, Guang-Jun [1 ]
Zhang, Jun-Liang [1 ]
Rong, Li-Xia [1 ]
Zheng, Wen-Yan [1 ]
Liu, Cong [1 ]
Chen, Zong-Yi [1 ]
机构
[1] Dezhou Univ, Sch Comp & Informat, Dezhou 253023, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: data analysis; techniques: spectroscopic; galaxies: stellar content; STAR-FORMATION; PHOTOMETRIC REDSHIFTS; NEURAL-NETWORKS; LINE SPECTRA; MODELS; DISTRIBUTIONS; METALLICITY; PARAMETERS; RESOLUTION; HISTORIES;
D O I
10.1093/mnras/stad3756
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The increasing size and complexity of data provided by both ongoing and planned galaxy surveys greatly contribute to our understanding of galaxy evolution. Deep learning methods are particularly well suited for handling the complex and massive data. We train a convolutional neural network (CNN) to simultaneously predict the stellar populations in galaxies: age, metallicity, colour excess E(B - V), and central velocity dispersion (VD) using spectra with redshift <= 0.3 from the Sloan Digital Sky Survey. This is the first time to use spectra based on deep learning to derive the four galaxy properties. The testing results show that our CNN predictions of galaxy properties are in good consistent with values by the traditional stellar population synthesis method with little scatters (0.11 dex for age and metallicity, 0.018 mag for E(B - V), and 31 km s(-1) for VD). In terms of the computational time, our method reduces by more than 10 times compared to traditional method. We further evaluate the performance of our CNN prediction model using spectra with different signal-to-noise ratios (S/Ns), redshifts, and spectral classes. We find that our model generally exhibits good performance, although the errors at different S/Ns, redshifts, and spectral classes vary slightly. Our well-trained CNN model and related codes are publicly available on https://github.com/sddzwll/CNNforStellarp.
引用
收藏
页码:10557 / 10563
页数:7
相关论文
共 50 条
  • [21] Standard Rulers, Candles, and Clocks from the Low-Redshift Universe
    Heavens, Alan
    Jimenez, Raul
    Verde, Licia
    PHYSICAL REVIEW LETTERS, 2014, 113 (24)
  • [22] THE SUPPRESSION OF STAR FORMATION AND THE EFFECT OF THE GALAXY ENVIRONMENT IN LOW-REDSHIFT GALAXY GROUPS
    Rasmussen, Jesper
    Mulchaey, John S.
    Bai, Lei
    Ponman, Trevor J.
    Raychaudhury, Somak
    Dariush, Ali
    ASTROPHYSICAL JOURNAL, 2012, 757 (02):
  • [23] Discovery of a Low-redshift Hot Dust-obscured Galaxy
    Li, Guodong
    Tsai, Chao-Wei
    Stern, Daniel
    Wu, Jingwen
    Assef, Roberto J.
    Blain, Andrew W.
    Diaz-Santos, Tanio
    Eisenhardt, Peter R. M.
    Griffith, Roger L.
    Jarrett, Thomas H.
    Jun, Hyunsung D.
    Lake, Sean E.
    Saade, M. Lynne
    ASTROPHYSICAL JOURNAL, 2023, 958 (02):
  • [24] A QUASI-STELLAR OBJECT PLUS HOST SYSTEM LENSED INTO A 6" EINSTEIN RING BY A LOW-REDSHIFT GALAXY
    Ghosh, Kajal K.
    Narasimha, D.
    ASTROPHYSICAL JOURNAL, 2009, 692 (01): : 694 - 701
  • [25] The formation of high-redshift radio galaxies: Clues from the low-redshift universe
    West, MJ
    MOST DISTANT RADIO GALAXIES, 1999, : 365 - 375
  • [26] Cosmic voids in evolving dark sector cosmologies: the low-redshift universe
    Adermann, Eromanga
    Elahi, Pascal J.
    Lewis, Geraint F.
    Power, Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (03) : 3381 - 3394
  • [27] The physical properties of star-forming galaxies in the low-redshift Universe
    Brinchmann, J
    Charlot, S
    White, SDM
    Tremonti, C
    Kauffmann, G
    Heckman, T
    Brinkmann, J
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 351 (04) : 1151 - 1179
  • [28] Supernovae in low-redshift galaxy clusters: The type Ia supernova rate
    Sharon, Keren
    Gal-Yam, Avishay
    Maoz, Dan
    Filippenko, Alexei V.
    Guhathakurta, Puragra
    ASTROPHYSICAL JOURNAL, 2007, 660 (02): : 1165 - 1175
  • [29] The gas and stellar mass of low-redshift damped Lyman-α absorbers
    Kanekar, Nissim
    Neeleman, Marcel
    Prochaska, J. Xavier
    Ghosh, Tapasi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (01) : L54 - L58
  • [30] Environmental Dependence of Type Ia Supernovae in Low-redshift Galaxy Clusters
    Larison, Conor
    Jha, Saurabh W.
    Kwok, Lindsey A.
    Camacho-Neves, Yssavo
    ASTROPHYSICAL JOURNAL, 2024, 961 (02):