Deep generative modeling and clustering of single cell Hi -C data

被引:9
|
作者
Liu, Qiao [1 ]
Zengt, Wanwen [1 ]
Zhang, Wei [2 ]
Wang, Sicheng [3 ]
Chen, Hongyang [4 ]
Jiang, Rui [5 ]
Zhou, Mu [6 ]
Zhang, Shaoting [7 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA USA
[2] Shandong Univ, Dept Biomed Engn, Jinan, Peoples R China
[3] UCSD, Dept Comp Sci & Engn, La Jolla, CA USA
[4] Zhejiang Lab, Hangzhou, Peoples R China
[5] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[6] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
[7] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
single cell; 3D genome; deep learning; unsupervised learning; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; TECHNOLOGIES;
D O I
10.1093/bib/bbac494
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering 3D genome conformation is important for understanding gene regulation and cellular function at a spatial level. The recent advances of single cell Hi -C technologies have enabled the profiling of the 3D architecture of DNA within individual cell, which allows us to study the cell -to -cell variability of 3D chromatin organization. Computational approaches are in urgent need to comprehensively analyze the sparse and heterogeneous single cell Hi -C data. Here, we proposed scDEC-Hi-C, a new framework for single cell Hi -C analysis with deep generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell Hi -C data clustering and imputation. Moreover, the generative power of scDEC-Hi-C could help unveil the differences of chromatin architecture across cell types. We expect that scDEC-Hi-C could shed light on deepening our understanding of the complex mechanism underlying the formation of chromatin contacts.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
    Yu, Lijia
    Liu, Chunlei
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BIOINFORMATICS, 2023, 39 (06)
  • [42] Single-cell RNA-seq data clustering by deep information fusion
    Ren, Liangrui
    Wang, Jun
    Li, Wei
    Guo, Maozu
    Yu, Guoxian
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (02) : 128 - 137
  • [43] scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [44] Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data
    Carstens, Simeon
    Nilges, Michael
    Habeck, Michael
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (12)
  • [45] scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data
    Liu, Huiling
    Ma, Wenxiu
    BIOINFORMATICS, 2023, 39 (10)
  • [46] hicGAN infers super resolution Hi-C data with generative adversarial networks
    Liu, Qiao
    Lv, Hairong
    Jiang, Rui
    BIOINFORMATICS, 2019, 35 (14) : I99 - I107
  • [47] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [48] Single cell colocalization analysis using deep generative model
    Kojima, Yasuhiro
    CANCER SCIENCE, 2025, 116 : 645 - 645
  • [49] An introduction to deep generative modeling
    Ruthotto L.
    Haber E.
    GAMM Mitteilungen, 2021, 44 (02)
  • [50] Semisupervised Generative Autoencoder for Single-Cell Data
    Trung Ngo Trong
    Mehtonen, Juha
    Gonzalez, Gerardo
    Kramer, Roger
    Hautamaki, Ville
    Heinaniemi, Merja
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2020, 27 (08) : 1190 - 1203