Deep generative modeling and clustering of single cell Hi -C data

被引:9
|
作者
Liu, Qiao [1 ]
Zengt, Wanwen [1 ]
Zhang, Wei [2 ]
Wang, Sicheng [3 ]
Chen, Hongyang [4 ]
Jiang, Rui [5 ]
Zhou, Mu [6 ]
Zhang, Shaoting [7 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA USA
[2] Shandong Univ, Dept Biomed Engn, Jinan, Peoples R China
[3] UCSD, Dept Comp Sci & Engn, La Jolla, CA USA
[4] Zhejiang Lab, Hangzhou, Peoples R China
[5] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[6] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
[7] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
single cell; 3D genome; deep learning; unsupervised learning; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; TECHNOLOGIES;
D O I
10.1093/bib/bbac494
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering 3D genome conformation is important for understanding gene regulation and cellular function at a spatial level. The recent advances of single cell Hi -C technologies have enabled the profiling of the 3D architecture of DNA within individual cell, which allows us to study the cell -to -cell variability of 3D chromatin organization. Computational approaches are in urgent need to comprehensively analyze the sparse and heterogeneous single cell Hi -C data. Here, we proposed scDEC-Hi-C, a new framework for single cell Hi -C analysis with deep generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell Hi -C data clustering and imputation. Moreover, the generative power of scDEC-Hi-C could help unveil the differences of chromatin architecture across cell types. We expect that scDEC-Hi-C could shed light on deepening our understanding of the complex mechanism underlying the formation of chromatin contacts.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Single-Cell Hi-C Technologies and Computational Data Analysis
    Dautle, Madison A.
    Chen, Yong
    ADVANCED SCIENCE, 2025, 12 (09)
  • [22] Scool: a new data storage format for single-cell Hi-C data
    Wolff, Joachim
    Abdennur, Nezar
    Backofen, Rolf
    Gruening, Bjorn
    BIOINFORMATICS, 2021, 37 (14) : 2053 - 2054
  • [23] Single-cell Hi-C: how modeling can augment experiment?
    Mali, Samira
    Tolokh, Igor S.
    Sharakhov, Igor V.
    Onufriev, Alexey V.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 362A - 362A
  • [24] Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models
    Xu, Chenling
    Lopez, Romain
    Mehlman, Edouard
    Regier, Jeffrey
    Jordan, Michael, I
    Yosef, Nir
    MOLECULAR SYSTEMS BIOLOGY, 2021, 17 (01)
  • [25] Synthesizing Cell Protein data for Human Protein Cell Profiling Using Dual Deep Generative Modeling
    Ranjan, Rakesh
    Inoue, Sozo
    Shibata, Tomohiro
    2020 JOINT 9TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2020 4TH INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2020,
  • [26] Deep generative clustering methods based on disentangled representations and augmented data
    Xu, Kunxiong
    Fan, Wentao
    Liu, Xin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (10) : 4575 - 4588
  • [27] scVSC: Deep Variational Subspace Clustering for Single-Cell Transcriptome Data
    Wang, Zile
    Wang, Haiyun
    Zhao, Jianping
    Xia, Junfeng
    Zheng, Chunhou
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (05) : 1492 - 1503
  • [28] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [29] Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data
    Kim, Hyeon-Jin
    Ioshikhes, Ilya
    Bonora, Giancarlo
    Ramani, Vijay
    Liu, Jie
    Qiu, Ruolan
    Lee, Choli
    Hesson, Jennifer
    Ware, Carol B.
    Shendure, Jay
    Duan, Zhijun
    Noble, William Stafford
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [30] DeepHiC: A Generative Adversarial Network for Enhancing Hi-C Data Resolution
    Hong, Hao
    Jiang, Shuai
    Li, Hao
    Du, Guifang
    Sun, Yu
    Tao, Huan
    Quan, Cheng
    Zhao, Chenghui
    Li, Ruijiang
    Li, Wanying
    Yin, Xiaoyao
    Huang, Yangchen
    Li, Cheng
    Chen, Hebing
    Bo, Xiaochen
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (02)