Deep generative modeling and clustering of single cell Hi -C data

被引:9
|
作者
Liu, Qiao [1 ]
Zengt, Wanwen [1 ]
Zhang, Wei [2 ]
Wang, Sicheng [3 ]
Chen, Hongyang [4 ]
Jiang, Rui [5 ]
Zhou, Mu [6 ]
Zhang, Shaoting [7 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA USA
[2] Shandong Univ, Dept Biomed Engn, Jinan, Peoples R China
[3] UCSD, Dept Comp Sci & Engn, La Jolla, CA USA
[4] Zhejiang Lab, Hangzhou, Peoples R China
[5] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[6] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ USA
[7] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
single cell; 3D genome; deep learning; unsupervised learning; CHROMATIN ACCESSIBILITY; REVEALS PRINCIPLES; GENOME; TECHNOLOGIES;
D O I
10.1093/bib/bbac494
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering 3D genome conformation is important for understanding gene regulation and cellular function at a spatial level. The recent advances of single cell Hi -C technologies have enabled the profiling of the 3D architecture of DNA within individual cell, which allows us to study the cell -to -cell variability of 3D chromatin organization. Computational approaches are in urgent need to comprehensively analyze the sparse and heterogeneous single cell Hi -C data. Here, we proposed scDEC-Hi-C, a new framework for single cell Hi -C analysis with deep generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell Hi -C data clustering and imputation. Moreover, the generative power of scDEC-Hi-C could help unveil the differences of chromatin architecture across cell types. We expect that scDEC-Hi-C could shed light on deepening our understanding of the complex mechanism underlying the formation of chromatin contacts.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Single-cell Hi-C data enhancement with deep residual and generative adversarial networks
    Wang, Yanli
    Guo, Zhiye
    Cheng, Jianlin
    BIOINFORMATICS, 2023, 39 (08)
  • [2] Simultaneous deep generative modelling and clustering of single-cell genomic data
    Liu, Qiao
    Chen, Shengquan
    Jiang, Rui
    Wong, Wing Hung
    NATURE MACHINE INTELLIGENCE, 2021, 3 (06) : 536 - +
  • [3] Simultaneous deep generative modelling and clustering of single-cell genomic data
    Qiao Liu
    Shengquan Chen
    Rui Jiang
    Wing Hung Wong
    Nature Machine Intelligence, 2021, 3 : 536 - 544
  • [4] Deep generative modeling for single-cell transcriptomics
    Romain Lopez
    Jeffrey Regier
    Michael B. Cole
    Michael I. Jordan
    Nir Yosef
    Nature Methods, 2018, 15 : 1053 - 1058
  • [5] Deep generative modeling for single-cell transcriptomics
    Lopez, Romain
    Regier, Jeffrey
    Cole, Michael B.
    Jordan, Michael I.
    Yosef, Nir
    NATURE METHODS, 2018, 15 (12) : 1053 - +
  • [6] Enhancing Single-Cell and Bulk Hi-C Data Using a Generative Transformer Model
    Gao, Ruoying
    Ferraro, Thomas N.
    Chen, Liang
    Zhang, Shaoqiang
    Chen, Yong
    BIOLOGY-BASEL, 2025, 14 (03):
  • [7] A review and performance evaluation of clustering frameworks for single-cell Hi-C data
    Zhen, Caiwei
    Wang, Yuxian
    Geng, Jiaquan
    Han, Lu
    Li, Jingyi
    Peng, Jinghao
    Wang, Tao
    Hao, Jianye
    Shang, Xuequn
    Wei, Zhongyu
    Zhu, Peican
    Peng, Jiajie
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [8] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [9] PhytoCluster: a generative deep learning model for clustering plant single-cell RNA-seq data
    Wang, Hao
    Fu, Xiangzheng
    Liu, Lijia
    Wang, Yi
    Hong, Jingpeng
    Pan, Bintao
    Cao, Yaning
    Chen, Yanqing
    Cao, Yongsheng
    Ma, Xiaoding
    Fang, Wei
    Yan, Shen
    ABIOTECH, 2025,
  • [10] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928