Panoptic SwiftNet: Pyramidal Fusion for Real-Time Panoptic Segmentation

被引:3
|
作者
Saric, Josip [1 ]
Orsic, Marin [2 ]
Segvic, Sinisa [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb 10000, Croatia
[2] Microblink, Zagreb 10000, Croatia
关键词
panoptic segmentation; real-time processing; satellite imagery; deep learning; computer vision; SCENE;
D O I
10.3390/rs15081968
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dense panoptic prediction is a key ingredient in many existing applications such as autonomous driving, automated warehouses, or remote sensing. Many of these applications require fast inference over large input resolutions on affordable or even embedded hardware. We proposed to achieve this goal by trading off backbone capacity for multi-scale feature extraction. In comparison with contemporaneous approaches to panoptic segmentation, the main novelties of our method are efficient scale-equivariant feature extraction, cross-scale upsampling through pyramidal fusion and boundary-aware learning of pixel-to-instance assignment. The proposed method is very well suited for remote sensing imagery due to the huge number of pixels in typical city-wide and region-wide datasets. We present panoptic experiments on Cityscapes, Vistas, COCO, and the BSB-Aerial dataset. Our models outperformed the state-of-the-art on the BSB-Aerial dataset while being able to process more than a hundred 1MPx images per second on an RTX3090 GPU with FP16 precision and TensorRT optimization.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Panoptic Segmentation with Convex Object Representation
    Yao, Zhicheng
    Wang, Sa
    Zhu, Jinbin
    Bao, Yungang
    [J]. COMPUTER JOURNAL, 2023, 67 (06): : 2009 - 2019
  • [42] Panoptic Segmentation Meets Remote Sensing
    de Carvalho, Osmar Luiz Ferreira
    de Carvalho Junior, Osmar Abilio
    Silva, Cristiano Rosa e
    de Albuquerque, Anesmar Olino
    Santana, Nickolas Castro
    Borges, Dibio Leandro
    Gomes, Roberto Arnaldo Trancoso
    Guimaraes, Renato Fontes
    [J]. REMOTE SENSING, 2022, 14 (04)
  • [43] Nuclei Segmentation via a Deep Panoptic Model with Semantic Feature Fusion
    Liu, Dongnan
    Zhang, Donghao
    Song, Yang
    Zhang, Chaoyi
    Zhang, Fan
    O'Donnell, Lauren
    Cai, Weidong
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 861 - 868
  • [44] Fully Convolutional Networks for Panoptic Segmentation
    Li, Yanwei
    Zhao, Hengshuang
    Qi, Xiaojuan
    Wang, Liwei
    Li, Zeming
    Sun, Jian
    Jia, Jiaya
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 214 - 223
  • [45] A Unified Neural Network for Panoptic Segmentation
    Yao, L.
    Chyau, A.
    [J]. COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 461 - 468
  • [46] LiDAR Panoptic Segmentation for Autonomous Driving
    Milioto, Andres
    Behley, Jens
    McCool, Chris
    Stachniss, Cyrill
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8505 - 8512
  • [47] DEEP MARKOV CLUSTERING FOR PANOPTIC SEGMENTATION
    Ye, Minxiang
    Zhang, Yifei
    Zhu, Shiqiang
    Xie, Anhuan
    Zhang, Dan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2380 - 2384
  • [48] EfficientLPS: Efficient LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Mohan, Rohit
    Buescher, Daniel
    Burgard, Wolfram
    Valada, Abhinav
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (03) : 1894 - 1914
  • [49] Lidar Panoptic Segmentation in an Open World
    Chakravarthy, Anirudh S.
    Ganesina, Meghana Reddy
    Hu, Peiyun
    Leal-Taixe, Laura
    Kong, Shu
    Ramanan, Deva
    Osep, Aljosa
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024,
  • [50] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161