Panoptic SwiftNet: Pyramidal Fusion for Real-Time Panoptic Segmentation

被引:3
|
作者
Saric, Josip [1 ]
Orsic, Marin [2 ]
Segvic, Sinisa [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb 10000, Croatia
[2] Microblink, Zagreb 10000, Croatia
关键词
panoptic segmentation; real-time processing; satellite imagery; deep learning; computer vision; SCENE;
D O I
10.3390/rs15081968
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dense panoptic prediction is a key ingredient in many existing applications such as autonomous driving, automated warehouses, or remote sensing. Many of these applications require fast inference over large input resolutions on affordable or even embedded hardware. We proposed to achieve this goal by trading off backbone capacity for multi-scale feature extraction. In comparison with contemporaneous approaches to panoptic segmentation, the main novelties of our method are efficient scale-equivariant feature extraction, cross-scale upsampling through pyramidal fusion and boundary-aware learning of pixel-to-instance assignment. The proposed method is very well suited for remote sensing imagery due to the huge number of pixels in typical city-wide and region-wide datasets. We present panoptic experiments on Cityscapes, Vistas, COCO, and the BSB-Aerial dataset. Our models outperformed the state-of-the-art on the BSB-Aerial dataset while being able to process more than a hundred 1MPx images per second on an RTX3090 GPU with FP16 precision and TensorRT optimization.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Panoptic Segmentation in Industrial Environments Using Synthetic and Real Data
    Quattrocchi, Camillo
    Di Mauro, Daniele
    Furnari, Antonino
    Farinella, Giovanni Maria
    [J]. IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 275 - 286
  • [32] Panoptic Nuscenes: A Large-Scale Benchmark for LiDAR Panoptic Segmentation and Tracking
    Fong, Whye Kit
    Mohan, Rohit
    Hurtado, Juana Valeria
    Zhou, Lubing
    Caesar, Holger
    Beijbom, Oscar
    Valada, Abhinav
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3795 - 3802
  • [33] Panoptic-SLAM: Visual SLAM in Dynamic Environments using Panoptic Segmentation
    Abati, Gahriel Fischer
    Soares, Joao Carlos Virgolino
    Medeiros, Vivian Suzano
    Meggiolaro, Marco Antonio
    Semini, Claudio
    [J]. 2024 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR 2024, 2024, : 762 - 769
  • [34] Dual-CNN Fusion Panoptic Segmentation Based on Edge Optimization
    Li, Yaling
    Luo, Xiaoyan
    Shi, Xiaofeng
    [J]. SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [35] Single-Shot Panoptic Segmentation
    Weber, Mark
    Luiten, Jonathon
    Leibe, Bastian
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 8476 - 8483
  • [36] Part-aware Panoptic Segmentation
    de Geus, Daan
    Meletis, Panagiotis
    Lu, Chenyang
    Wen, Xiaoxiao
    Dubbelman, Gijs
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5481 - 5490
  • [37] Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation
    Zhou, Zixiang
    Zhang, Yang
    Foroosh, Hassan
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13189 - 13198
  • [38] Improving Panoptic Segmentation at All Scales
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Kontschieder, Peter
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7298 - 7307
  • [39] Pointly-Supervised Panoptic Segmentation
    Fan, Junsong
    Zhang, Zhaoxiang
    Tan, Tieniu
    [J]. COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 319 - 336
  • [40] Unifying Panoptic Segmentation for Autonomous Driving
    Zendel, Oliver
    Schoerghuber, Matthias
    Rainer, Bernhard
    Murschitz, Markus
    Beleznai, Csaba
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 21319 - 21328