Deep Learning-Assisted Automated Multidimensional Single Particle Tracking in Living Cells

被引:0
|
作者
Song, Dongliang [1 ]
Zhang, Xin [1 ]
Li, Baoyun [1 ]
Sun, Yuanfang [1 ]
Mei, Huihui [1 ]
Cheng, Xiaojuan [2 ]
Li, Jieming [3 ]
Cheng, Xiaodong [2 ]
Fang, Ning [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Innovat Lab Sci & Technol Energy Mat Fujian Prov, Xiamen 361005, Peoples R China
[2] Wenzhou Med Univ, Sch Pharmaceut Sci, Wenzhou 325035, Peoples R China
[3] Bristol Myers Squibb Co, New Brunswick, NJ 08901 USA
基金
中国国家自然科学基金;
关键词
single particle tracking; live cell imaging; deep learning; rotational tracking; cargo transport;
D O I
10.1021/acs.nanolett.3c04870
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0 degrees-360 degrees) and polar angles (0 degrees-90 degrees) with errors of less than 2 degrees on the experimental and simulated data under S/N of similar to 4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.
引用
收藏
页码:3082 / 3088
页数:7
相关论文
共 50 条
  • [21] Deep Learning-Assisted OFDM Detection with Hardware Impairments
    Singh, Amit
    Sharma, Sanjeev
    Deka, Kuntal
    Bhatia, Vimal
    [J]. Journal of Communications and Information Networks, 2023, 8 (04) : 378 - 388
  • [22] Deep learning-assisted analysis of automobiles handling performances
    Sapienza, Davide
    Paganelli, Davide
    Prato, Marco
    Bertogna, Marko
    Spallanzani, Matteo
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2022, 13 (01) : 78 - 95
  • [23] Deep learning-assisted segmentation of bubble image shadowgraph
    Chen, Binqi
    Ekwonu, Michael Chukwuemeka
    Zhang, Shujun
    [J]. JOURNAL OF VISUALIZATION, 2022, 25 (06) : 1125 - 1136
  • [24] Deep Metric Learning-Assisted 3D Audio-Visual Speaker Tracking via Two-Layer Particle Filter
    Li, Yidi
    Liu, Hong
    Yang, Bing
    Ding, Runwei
    Chen, Yang
    [J]. COMPLEXITY, 2020, 2020
  • [25] Dynamics of magnetic lipoplexes studied by single particle tracking in living cells
    Sauer, A. M.
    de Bruin, K. G.
    Ruthardt, N.
    Mykhaylyk, O.
    Plank, C.
    Braeuchle, C.
    [J]. JOURNAL OF CONTROLLED RELEASE, 2009, 137 (02) : 136 - 145
  • [26] Mode of myosin transportation in living cells studied by single particle tracking
    Liang, Zhang-Yi
    Xu, Ning
    Guan, Ying-Hua
    Zhang, You-Yi
    Zhao, Xin-Sheng
    [J]. CHINESE JOURNAL OF CHEMICAL PHYSICS, 2007, 20 (04) : 445 - 448
  • [27] Deep Learning-Assisted Assessing of Single Circulating Tumor Cell Viability via Cellular Morphology
    Yang, Yiyao
    Wang, Zhaoliang
    Hao, Tingting
    Ye, Meng
    Li, Jinyun
    Zhang, Qingqing
    Guo, Zhiyong
    [J]. Analytical Chemistry, 2024, 96 (42) : 16777 - 16782
  • [28] Deep learning-assisted IoMT framework for cerebral microbleed detection
    Ali, Zeeshan
    Naz, Sheneela
    Yasmin, Sadaf
    Bukhari, Maryam
    Kim, Mucheol
    [J]. HELIYON, 2023, 9 (12)
  • [29] Deep Learning-Assisted Jamming Mitigation with Movable Antenna Array
    Tang, Xiao
    Jiang, Yudan
    Liu, Jinxin
    Du, Qinghe
    Niyato, Dusit
    Han, Zhu
    [J]. arXiv,
  • [30] Machine Learning-Assisted CellIdentification Based on Ion CurrentFingerprints of Single Cells at theOrifice of a Nanopipette
    Gao, Tienan
    He, Xiulan
    Xue, Yifei
    Li, Ting
    Liu, Yang
    Chen, Mingli
    Wang, Jianhua
    Yu, Ping
    Mao, Lanqun
    [J]. CCS CHEMISTRY, 2024,