Deep Learning-Assisted Automated Multidimensional Single Particle Tracking in Living Cells

被引:0
|
作者
Song, Dongliang [1 ]
Zhang, Xin [1 ]
Li, Baoyun [1 ]
Sun, Yuanfang [1 ]
Mei, Huihui [1 ]
Cheng, Xiaojuan [2 ]
Li, Jieming [3 ]
Cheng, Xiaodong [2 ]
Fang, Ning [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Innovat Lab Sci & Technol Energy Mat Fujian Prov, Xiamen 361005, Peoples R China
[2] Wenzhou Med Univ, Sch Pharmaceut Sci, Wenzhou 325035, Peoples R China
[3] Bristol Myers Squibb Co, New Brunswick, NJ 08901 USA
基金
中国国家自然科学基金;
关键词
single particle tracking; live cell imaging; deep learning; rotational tracking; cargo transport;
D O I
10.1021/acs.nanolett.3c04870
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0 degrees-360 degrees) and polar angles (0 degrees-90 degrees) with errors of less than 2 degrees on the experimental and simulated data under S/N of similar to 4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.
引用
收藏
页码:3082 / 3088
页数:7
相关论文
共 50 条
  • [41] Deep learning-assisted pulsed discharge plasma catalysis modeling
    Pan, Jie
    Liu, Yun
    Zhang, Shuai
    Hu, Xiucui
    Liu, Yadi
    Shao, Tao
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [42] Deep learning-assisted multifunctional wavefront modulation with Willis coupling
    Gao, Hao
    Wang, Ze-Wei
    Xu, Zi-Xiang
    Yang, Jing
    Liang, Bin
    Cheng, Jian-Chun
    [J]. APPLIED PHYSICS LETTERS, 2022, 121 (11)
  • [43] Epidermal piezoresistive structure with deep learning-assisted data translation
    So, Changrok
    Kim, Jong Uk
    Luan, Haiwen
    Park, Sang Uk
    Kim, Hyochan
    Han, Seungyong
    Kim, Doyoung
    Shin, Changhwan
    Kim, Tae-il
    Lee, Wi Hyoung
    Park, Yoonseok
    Heo, Keun
    Baac, Hyoung Won
    Ko, Jong Hwan
    Won, Sang Min
    [J]. NPJ FLEXIBLE ELECTRONICS, 2022, 6 (01)
  • [44] Deep learning-assisted frequency-domain photoacoustic microscopy
    Tserevelakis, George J.
    Barmparis, Georgios D.
    Kokosalis, Nikolaos
    Giosa, Eirini Smaro
    Pavlopoulos, Anastasios
    Tsironis, Giorgos P.
    Zacharakis, Giannis
    [J]. OPTICS LETTERS, 2023, 48 (10) : 2720 - 2723
  • [45] Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone
    Nakahara, Kenichi
    Asaoka, Ryo
    Tanito, Masaki
    Shibata, Naoto
    Mitsuhashi, Keita
    Fujino, Yuri
    Matsuura, Masato
    Inoue, Tatsuya
    Azuma, Keiko
    Obata, Ryo
    Murata, Hiroshi
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2022, 106 (04) : 587 - 592
  • [46] Deep learning-assisted comparative analysis of animal trajectories with DeepHL
    Maekawa, Takuya
    Ohara, Kazuya
    Zhang, Yizhe
    Fukutomi, Matasaburo
    Matsumoto, Sakiko
    Matsumura, Kentarou
    Shidara, Hisashi
    Yamazaki, Shuhei J.
    Fujisawa, Ryusuke
    Ide, Kaoru
    Nagaya, Naohisa
    Yamazaki, Koji
    Koike, Shinsuke
    Miyatake, Takahisa
    Kimura, Koutarou D.
    Ogawa, Hiroto
    Takahashi, Susumu
    Yoda, Ken
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [47] Deep learning-assisted diagnosis of chronic atrophic gastritis in endoscopy
    Shi, Yanting
    Wei, Ning
    Wang, Kunhong
    Wu, Jingjing
    Tao, Tao
    Li, Na
    Lv, Bing
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [48] Deep Reinforcement Learning-Assisted Energy Harvesting Wireless Networks
    Ye, Junliang
    Gharavi, Hamid
    [J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2021, 5 (02): : 990 - 1002
  • [49] ROPRNet: Deep learning-assisted recurrence prediction for retinopathy of prematurity
    Huang, Peijie
    Xie, Yiying
    Wu, Rong
    Lin, Qiuxia
    Cai, Nian
    Chen, Haitao
    Feng, Songfu
    [J]. Biomedical Signal Processing and Control, 2025, 100
  • [50] An automated tool for 3d tracking of single molecules in living cells
    Gardini, L.
    Capitanio, M.
    Pavone, F. S.
    [J]. SINGLE MOLECULE SPECTROSCOPY AND SUPERRESOLUTION IMAGING VIII, 2015, 9331