Quantum simulation of excited states from parallel contracted quantum eigensolvers

被引:1
|
作者
Benavides-Riveros, Carlos L. [1 ,2 ]
Wang, Yuchen [3 ,4 ]
Warren, Samuel [3 ,4 ]
Mazziotti, David A. [3 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR INO, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 03期
基金
美国国家科学基金会;
关键词
excited states; quantum simulation; anti-Hermitian contracted Schrodinger equation; non-unitary transformations; wave function ansatz; contracted quantum eigensolver; DENSITY-FUNCTIONAL THEORY; SCHRODINGER-EQUATION; ALGORITHM;
D O I
10.1088/1367-2630/ad2d1d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computing excited-state properties of molecules and solids is considered one of the most important near-term applications of quantum computers. While many of the current excited-state quantum algorithms differ in circuit architecture, specific exploitation of quantum advantage, or result quality, one common feature is their rooting in the Schrodinger equation. However, through contracting (or projecting) the eigenvalue equation, more efficient strategies can be designed for near-term quantum devices. Here we demonstrate that when combined with the Rayleigh-Ritz variational principle for mixed quantum states, the ground-state contracted quantum eigensolver (CQE) can be generalized to compute any number of quantum eigenstates simultaneously. We introduce two excited-state (anti-Hermitian) CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm, such as its scalability. To showcase our approach, we study several model and chemical Hamiltonians and investigate the performance of different implementations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Collective optimization for variational quantum eigensolvers
    Zhang, Dan-Bo
    Yin, Tao
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [22] Variational Quantum Eigensolvers for Sparse Hamiltonians
    Kirby, William M.
    Love, Peter J.
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [23] Parallel Simulation of Quantum Search
    Caraiman, S.
    Manta, V.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2010, 5 (05) : 634 - 641
  • [24] Quantum Algorithms and Simulation for Parallel and Distributed Quantum Computing
    Parekh, Rhea
    Ricciardi, Andrea
    Darwish, Ahmed
    DiAdamo, Stephen
    PROCEEDINGS OF SECOND INTERNATIONAL WORKSHOP ON QUANTUM COMPUTING SOFTWARE (QCS 2021), 2021, : 9 - 19
  • [25] Quantum phase transitions for excited states
    Cejnar, P.
    Stransky, P.
    CAPTURE GAMMA-RAY SPECTROSCOPY AND RELATED TOPICS, 2009, 1090 : 169 - 173
  • [26] Quantum Davidson algorithm for excited states
    Tkachenko, Nikolay, V
    Cincio, Lukasz
    Boldyrev, Alexander, I
    Tretiak, Sergei
    Dub, Pavel A.
    Zhang, Yu
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03)
  • [27] Variational Quantum Computation of Excited States
    Higgott, Oscar
    Wang, Daochen
    Brierley, Stephen
    QUANTUM, 2019, 3
  • [28] Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry
    Dalton, Kieran
    Long, Christopher K.
    Yordanov, Yordan S.
    Smith, Charles G.
    Barnes, Crispin H. W.
    Mertig, Normann
    Arvidsson-Shukur, David R. M.
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [29] Quantifying the effect of gate errors on variational quantum eigensolvers for quantum chemistry
    Kieran Dalton
    Christopher K. Long
    Yordan S. Yordanov
    Charles G. Smith
    Crispin H. W. Barnes
    Normann Mertig
    David R. M. Arvidsson-Shukur
    npj Quantum Information, 10
  • [30] Magnetic Dichroism from Optically Excited Quantum Well States
    Chiang, Cheng-Tien
    Winkelmann, Aimo
    Yu, Ping
    Kirschner, Juergen
    PHYSICAL REVIEW LETTERS, 2009, 103 (07)