Cross-Domain Class Incremental Broad Network for Continuous Diagnosis of Rotating Machinery Faults Under Variable Operating Conditions

被引:5
|
作者
Shi, Mingkuan [1 ]
Ding, Chuancang [1 ]
Chang, Shuyuan [2 ]
Shen, Changqing [1 ]
Huang, Weiguo [1 ]
Zhu, Zhongkui [1 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[2] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Broad learning system (BLS); class incremental learning; intelligent fault diagnosis (IFD); variable operating conditions;
D O I
10.1109/TII.2023.3345449
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning models have been widely successful in the field of intelligent fault diagnosis. Most of the existing machine learning models are deployed in static environments and rely on precollected datasets for offline training, which makes it impossible to update the models further once they are established. However, in the open and dynamic environment in reality, there is always incoming data in the form of streams, including new categories of data that are constantly generated over time. In addition, the operating conditions of mechanical equipment are time-varying, which results in continuous stream data that are nonindependently and homogeneously distributed. In industrial applications, the diagnosis problem of nonindependent and identically distributed continuous streaming data is referred to as the cross-domain class incremental diagnosis problem. To address the cross-domain class incremental problem, a novel cross-domain class incremental broad network (CDCIBN) is proposed. Specifically, to solve the nonindependent identically distributed problem, a novel domain-adaptation learning loss function is first designed, which enables the conventional broad network to handle the category increment task well. Then, a cross-domain class incremental learning mechanism is designed, which learns new categories while retaining the knowledge of old categories well enough without replaying old category data. The effectiveness of the proposed method is evaluated through multiple mechanical failure increment cases. Experimental analysis demonstrates that the designed CDCIBN has significant advantages in the variable working condition class incremental application.
引用
收藏
页码:6356 / 6368
页数:13
相关论文
共 50 条
  • [31] Cross-Level fusion for rotating machinery fault diagnosis under compound variable working conditions
    Wang, Sihan
    Wang, Dazhi
    Kong, Deshan
    Li, Wenhui
    Wang, Huanjie
    Pecht, Michael
    MEASUREMENT, 2022, 199
  • [32] Self-supervised bi-classifier adversarial transfer network for cross-domain fault diagnosis of rotating machinery
    Kuang, Jiachen
    Xu, Guanghua
    Tao, Tangfei
    Zhang, Sicong
    ISA TRANSACTIONS, 2022, 130 : 433 - 448
  • [33] A novel momentum prototypical neural network to cross-domain fault diagnosis for rotating machinery subject to cold-start
    Chen, Xiaohan
    Yang, Rui
    Xue, Yihao
    Yang, Chao
    Song, Baoye
    Zhong, Maiying
    NEUROCOMPUTING, 2023, 555
  • [34] Source-free cross-domain fault diagnosis of rotating machinery using the Siamese framework
    Ma, Chenyu
    Tu, Xiaotong
    Zhou, Guanxing
    Huang, Yue
    Ding, Xinghao
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [35] Unsupervised Cross-Domain Fault Diagnosis Using Feature Representation Alignment Networks for Rotating Machinery
    Chen, Jiahong
    Wang, Jing
    Zhu, Jianxin
    Lee, Tong Heng
    de Silva, Clarence W.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (05) : 2770 - 2781
  • [36] Transfer Graph-Driven Rotating Machinery Diagnosis Considering Cross-Domain Relationship Construction
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Yuan, Xiaohui
    Ge, Ming-Feng
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5351 - 5360
  • [37] Relationship Transfer Domain Generalization Network for Rotating Machinery Fault Diagnosis Under Different Working Conditions
    Qian, Quan
    Zhou, Jianghong
    Qin, Yi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (09) : 9898 - 9908
  • [38] Cross-domain fault diagnosis of rotating machinery in nuclear power plant based on improved domain adaptation method
    Wang, Zhichao
    Xia, Hong
    Zhu, Shaomin
    Peng, Binsen
    Zhang, Jiyu
    Jiang, Yingying
    Annor-Nyarko, M.
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2022, 59 (01) : 67 - 77
  • [39] Signal-Transformer: A Robust and Interpretable Method for Rotating Machinery Intelligent Fault Diagnosis Under Variable Operating Conditions
    Tang, Jian
    Zheng, Guanhui
    Wei, Chao
    Huang, Wenbin
    Ding, Xiaoxi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [40] A Novel Joint Class Subdomain Adaptive Fault Diagnosis Algorithm for Bearing Faults Under Variable Operating Conditions
    Lu, Yixiang
    Li, Mingsheng
    Gao, Qingwei
    Zhu, De
    Zhao, Dawei
    Li, Teng
    IEEE Sensors Journal, 2024, 24 (21) : 35221 - 35230