A novel momentum prototypical neural network to cross-domain fault diagnosis for rotating machinery subject to cold-start

被引:10
|
作者
Chen, Xiaohan [1 ,2 ]
Yang, Rui [1 ]
Xue, Yihao [1 ,2 ]
Yang, Chao [3 ]
Song, Baoye [4 ]
Zhong, Maiying [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou 215123, Peoples R China
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, England
[3] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Few-shot; Cross-domain; Cold-start; Transfer learning; SYSTEMS; MODEL;
D O I
10.1016/j.neucom.2023.126656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain rotating machinery fault diagnosis has achieved great success recently with the development of deep transfer learning. However, conventional deep transfer learning methods encounter a severe decline in prediction accuracy when fault samples are limited. Moreover, conventional deep transfer learning methods require additional parameter tuning rather than cold-start when applied to the target tasks, hampering their implementation in practical fault diagnosis applications. In this paper, a novel method, named momentum prototypical neural network (MoProNet), is proposed for cross-domain few-shot rotating machinery fault diagnosis. The MoProNet progressively updates the support encoder to address the prototype oscillation problem and enable the model to apply limited source domain samples to predict target domain faults with cold-start. The performance of the proposed MoProNet is tested on a bearing dataset and a hardware-in-the-loop high-speed train simulation platform, respectively, with over forty cross-domain few-shot fault diagnosis tasks. The experimental results demonstrate that the proposed MoProNet achieves satisfactory results and outperforms the other comparable methods in the same cross-domain few-shot scenarios with the simple AlexNet backbone.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Intelligent Cross-domain Fault Diagnosis For Rotating Machinery Using Multiscale Adversarial Convolutional Neural Network
    Yue, Ke
    Li, Jipu
    Chen, Junbin
    Li, Weihua
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,
  • [2] Cross-domain privacy-preserving broad network for fault diagnosis of rotating machinery
    Shi, Mingkuan
    Ding, Chuancang
    Chang, Shuyuan
    Wang, Rui
    Huang, Weiguo
    Zhu, Zhongkui
    ADVANCED ENGINEERING INFORMATICS, 2023, 58
  • [3] Cross-Domain Fault Diagnosis of Rotating Machinery Using Discriminative Feature Attention Network
    Jang, Gye-Bong
    Kim, Jin-Young
    Cho, Sung-Bae
    IEEE ACCESS, 2021, 9 : 99781 - 99793
  • [4] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhongwei Zhang
    Mingyu Shao
    Chicheng Ma
    Zhe Lv
    Jilei Zhou
    Nonlinear Dynamics, 2022, 108 : 2385 - 2404
  • [5] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhang, Zhongwei
    Shao, Mingyu
    Ma, Chicheng
    Lv, Zhe
    Zhou, Jilei
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2385 - 2404
  • [6] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Cross-domain corpus selection for cold-start context
    Hsiao, Wei-Ching
    Wang, Hei Chia
    JOURNAL OF INFORMATION SCIENCE, 2024,
  • [8] CDRNP: Cross-Domain Recommendation to Cold-Start Users via Neural Process
    Li, Xiaodong
    Sheng, Jiawei
    Cao, Jiangxia
    Zhang, Wenyuan
    Li, Quangang
    Liu, Tingwen
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 378 - 386
  • [9] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164
  • [10] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712