Cross-Domain Class Incremental Broad Network for Continuous Diagnosis of Rotating Machinery Faults Under Variable Operating Conditions

被引:5
|
作者
Shi, Mingkuan [1 ]
Ding, Chuancang [1 ]
Chang, Shuyuan [2 ]
Shen, Changqing [1 ]
Huang, Weiguo [1 ]
Zhu, Zhongkui [1 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[2] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Broad learning system (BLS); class incremental learning; intelligent fault diagnosis (IFD); variable operating conditions;
D O I
10.1109/TII.2023.3345449
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning models have been widely successful in the field of intelligent fault diagnosis. Most of the existing machine learning models are deployed in static environments and rely on precollected datasets for offline training, which makes it impossible to update the models further once they are established. However, in the open and dynamic environment in reality, there is always incoming data in the form of streams, including new categories of data that are constantly generated over time. In addition, the operating conditions of mechanical equipment are time-varying, which results in continuous stream data that are nonindependently and homogeneously distributed. In industrial applications, the diagnosis problem of nonindependent and identically distributed continuous streaming data is referred to as the cross-domain class incremental diagnosis problem. To address the cross-domain class incremental problem, a novel cross-domain class incremental broad network (CDCIBN) is proposed. Specifically, to solve the nonindependent identically distributed problem, a novel domain-adaptation learning loss function is first designed, which enables the conventional broad network to handle the category increment task well. Then, a cross-domain class incremental learning mechanism is designed, which learns new categories while retaining the knowledge of old categories well enough without replaying old category data. The effectiveness of the proposed method is evaluated through multiple mechanical failure increment cases. Experimental analysis demonstrates that the designed CDCIBN has significant advantages in the variable working condition class incremental application.
引用
收藏
页码:6356 / 6368
页数:13
相关论文
共 50 条
  • [21] Cross-domain fault diagnosis of rotating machinery based on graph feature extraction
    Wang, Pei
    Liu, Jie
    Zhou, Jianzhong
    Duan, Ran
    Jiang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [22] Cross-Domain Open-Set Fault Diagnosis Based on Target Domain Slanted Adversarial Network for Rotating Machinery
    Su, Zuqiang
    Jiang, Weilong
    Zhao, Yang
    Feng, Song
    Wang, Shuxian
    Luo, Maolin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [23] Deep subclass reconstruction network for fault diagnosis of rotating machinery under various operating conditions
    Yu, Hui
    Wang, Kai
    Li, Yan
    He, Mengfan
    APPLIED SOFT COMPUTING, 2021, 112
  • [24] Joint Wasserstein distance matching under conditional probability distribution for cross-domain fault diagnosis of rotating machinery
    Wang, Ran
    Yan, Fucheng
    Yu, Liang
    Shen, Changqing
    Hu, Xiong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 210
  • [25] Deep Discriminative Clustering and Structural Constraint for Cross-domain Fault Diagnosis of Rotating Machinery
    Wu, Wenbo
    Liu, Yongkui
    Zhang, Lin
    Xu, Xun
    Wang, Lihui
    MANUFACTURING LETTERS, 2023, 35 : 1072 - 1080
  • [26] Deep Discriminative Clustering and Structural Constraint for Cross-domain Fault Diagnosis of Rotating Machinery
    Wu, Wenbo
    Liu, Yongkui
    Zhang, Lin
    Xu, Xun
    Wang, Lihui
    MANUFACTURING LETTERS, 2023, 35 : 1072 - 1080
  • [27] Transferable graph features-driven cross-domain rotating machinery fault diagnosis
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Ge, Ming-Feng
    Jiang, Xingxing
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [28] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhongwei Zhang
    Mingyu Shao
    Chicheng Ma
    Zhe Lv
    Jilei Zhou
    Nonlinear Dynamics, 2022, 108 : 2385 - 2404
  • [29] An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery
    Zhang, Zhongwei
    Shao, Mingyu
    Ma, Chicheng
    Lv, Zhe
    Zhou, Jilei
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2385 - 2404
  • [30] Cross-Domain Machinery Fault Diagnosis Using Adversarial Network with Conditional Alignments
    Xu, Nan-Xi
    Li, Xiang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,