Nowcasting in a pandemic using non-parametric mixed frequency VARs

被引:31
|
作者
Huber, Florian [1 ]
Koop, Gary [2 ]
Onorante, Luca [3 ,4 ]
Pfarrhofer, Michael [1 ,6 ,7 ]
Schreiner, Josef [5 ]
机构
[1] Univ Salzburg, Salzburg, Austria
[2] Univ Strathclyde, Strathclyde, England
[3] European Commiss, Joint Res Ctr, Rome, Italy
[4] European Cent Bank, Frankfurt, Germany
[5] Oesterreich Nationalbank, Vienna, Austria
[6] Univ Salzburg, Dept Econ, Monchsberg 2a, A-5020 Salzburg, Austria
[7] Univ Salzburg, Salzburg Ctr European Union Studies SCEUS, Monchsberg2a, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Regression tree models; Bayesian; Macroeconomic forecasting; Vector autoregressions; BART;
D O I
10.1016/j.jeconom.2020.11.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops Bayesian econometric methods for posterior inference in non -parametric mixed frequency VARs using additive regression trees. We argue that regres-sion tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.(c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:52 / 69
页数:18
相关论文
共 50 条
  • [41] Parametric and Non-parametric Encompassing Procedures
    Bontemps, Christophe
    Florens, Jean-Pierre
    Richard, Jean-Francois
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2008, 70 : 751 - 780
  • [42] MODELLING HAZARD OF BECOMING ALCOHOLIC USING PARAMETRIC AND NON-PARAMETRIC METHODS
    Muriuki, George Mwangi
    Mutiso, John M.
    Kosgei, Mathew K.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 (02): : 545 - 556
  • [43] Evaluation of maize hybrids stability using parametric and non-parametric methods
    Bujak, Henryk
    Nowosad, Kamila
    Warzecha, Roman
    MAYDICA, 2014, 59 (1-4): : 170 - 175
  • [44] Evaluation of maize genotypes using parametric and non-parametric stability estimates
    Abera, W.
    Labuschagne, M. T.
    Maartens, H.
    CEREAL RESEARCH COMMUNICATIONS, 2006, 34 (2-3) : 925 - 931
  • [45] Modeling Wind Speed Using Parametric and Non-Parametric Distribution Functions
    Ncwane, Siyanda
    Folly, Komla A.
    IEEE ACCESS, 2021, 9 : 104501 - 104512
  • [46] Density estimation using non-parametric and semi-parametric mixtures
    Wang, Yong
    Chee, Chew-Seng
    STATISTICAL MODELLING, 2012, 12 (01) : 67 - 92
  • [47] Evaluation of maize genotypes using parametric and non-parametric stability estimates
    W. Abera
    M. T. Labuschagne
    H. Maartens
    Cereal Research Communications, 2006, 34 : 925 - 931
  • [48] Time-frequency analysis for parametric and non-parametric identification of nonlinear dynamical systems
    Pai, P. Frank
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 36 (02) : 332 - 353
  • [49] Measuring directed functional connectivity using non-parametric directionality analysis: Validation and comparison with non-parametric Granger Causality
    West, Timothy O.
    Halliday, David M.
    Bressler, Steven L.
    Farmer, Simon F.
    Litvak, Vladimir
    NEUROIMAGE, 2020, 218
  • [50] Non-Parametric Frequency Response Estimation of Two-Mass-System using Kalman Filter
    Nevaranta, N.
    Goubej, M.
    Lindh, T.
    Niemela, M.
    Pyrhonen, O.
    2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), 2016,