Nowcasting in a pandemic using non-parametric mixed frequency VARs

被引:31
|
作者
Huber, Florian [1 ]
Koop, Gary [2 ]
Onorante, Luca [3 ,4 ]
Pfarrhofer, Michael [1 ,6 ,7 ]
Schreiner, Josef [5 ]
机构
[1] Univ Salzburg, Salzburg, Austria
[2] Univ Strathclyde, Strathclyde, England
[3] European Commiss, Joint Res Ctr, Rome, Italy
[4] European Cent Bank, Frankfurt, Germany
[5] Oesterreich Nationalbank, Vienna, Austria
[6] Univ Salzburg, Dept Econ, Monchsberg 2a, A-5020 Salzburg, Austria
[7] Univ Salzburg, Salzburg Ctr European Union Studies SCEUS, Monchsberg2a, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Regression tree models; Bayesian; Macroeconomic forecasting; Vector autoregressions; BART;
D O I
10.1016/j.jeconom.2020.11.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops Bayesian econometric methods for posterior inference in non -parametric mixed frequency VARs using additive regression trees. We argue that regres-sion tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.(c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:52 / 69
页数:18
相关论文
共 50 条
  • [21] Non-parametric smoothing of the location model in mixed variable discrimination
    O. Asparoukhov
    W. J. Krzanowski
    Statistics and Computing, 2000, 10 : 289 - 297
  • [22] Mixed Non-Parametric Continuous and Discrete Bayesian Belief Nets
    Hanea, Anca
    Kurowicka, Dorota
    ADVANCES IN MATHEMATICAL MODELING FOR RELIABILITY, 2008, : 9 - 16
  • [23] Anomaly detection using non-parametric information
    Varma, Anil
    Bonissone, Piero
    Yan, Weizhong
    Eklund, Neil
    Goebel, Kai
    Iyer, Naresh
    Bonissone, Stefano
    PROCEEDINGS OF THE ASME TURBO EXPO 2007, VOL 1, 2007, : 813 - 821
  • [24] Frequency-domain subspace system identification using non-parametric noise models
    Pintelon, R
    AUTOMATICA, 2002, 38 (08) : 1295 - 1311
  • [25] Valuation of an option using non-parametric methods
    Chiang, Shu Ling
    Tsai, Ming Shann
    REVIEW OF DERIVATIVES RESEARCH, 2019, 22 (03) : 419 - 447
  • [26] Valuation of an option using non-parametric methods
    Shu Ling Chiang
    Ming Shann Tsai
    Review of Derivatives Research, 2019, 22 : 419 - 447
  • [27] Abnormal ECG Signals Analysis Using Non-Parametric Time-Frequency Techniques
    Dliou, A.
    Latif, R.
    Laaboubi, M.
    Maoulainine, F. M. R.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (02) : 913 - 921
  • [28] Minimum bias error of the frequency estimation with the non-parametric method
    Lusin, Tomaz
    Agrez, Dusan
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 1232 - 1237
  • [29] Conditional Non-parametric Bootstrap for Non-linear Mixed Effect Models
    Comets, Emmanuelle
    Rodrigues, Christelle
    Jullien, Vincent
    Ursino, Moreno
    PHARMACEUTICAL RESEARCH, 2021, 38 (06) : 1057 - 1066
  • [30] NON-PARAMETRIC STRINGS
    GAMBINI, R
    TRIAS, A
    PHYSICS LETTERS B, 1988, 200 (03) : 280 - 284