Nowcasting in a pandemic using non-parametric mixed frequency VARs

被引:31
|
作者
Huber, Florian [1 ]
Koop, Gary [2 ]
Onorante, Luca [3 ,4 ]
Pfarrhofer, Michael [1 ,6 ,7 ]
Schreiner, Josef [5 ]
机构
[1] Univ Salzburg, Salzburg, Austria
[2] Univ Strathclyde, Strathclyde, England
[3] European Commiss, Joint Res Ctr, Rome, Italy
[4] European Cent Bank, Frankfurt, Germany
[5] Oesterreich Nationalbank, Vienna, Austria
[6] Univ Salzburg, Dept Econ, Monchsberg 2a, A-5020 Salzburg, Austria
[7] Univ Salzburg, Salzburg Ctr European Union Studies SCEUS, Monchsberg2a, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Regression tree models; Bayesian; Macroeconomic forecasting; Vector autoregressions; BART;
D O I
10.1016/j.jeconom.2020.11.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops Bayesian econometric methods for posterior inference in non -parametric mixed frequency VARs using additive regression trees. We argue that regres-sion tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.(c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:52 / 69
页数:18
相关论文
共 50 条
  • [31] Non-parametric Econometrics
    Leong, Chee Kian
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2012, 175 : 1072 - 1072
  • [32] Non-Parametric Parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    ACM SIGPLAN NOTICES, 2009, 44 (8-9) : 135 - 148
  • [33] Conditional Non-parametric Bootstrap for Non-linear Mixed Effect Models
    Emmanuelle Comets
    Christelle Rodrigues
    Vincent Jullien
    Moreno Ursino
    Pharmaceutical Research, 2021, 38 : 1057 - 1066
  • [34] A Non-Parametric Control Chart for High Frequency Multivariate Data
    Kakde, Deovrat
    Peredriy, Sergiy
    Chaudhuri, Arin
    2017 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2017,
  • [35] Non-parametric linear quadratic optimal control in the frequency domain
    Lovaas, Christian
    Goodwin, Graham C.
    Seron, Maria M.
    2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 1712 - +
  • [36] Mixed Non-Parametric and Parametric Estimation Techniques in R Package etasFLP for Earthquakes' Description
    Chiodi, Marcello
    Adelfio, Giada
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (03):
  • [37] Non-Parametric Parametricity
    Nei, Georg
    Dreyer, Derek
    Rossberg, Andreas
    ICFP'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2009, : 135 - 148
  • [38] Nowcasting Using Mixed Frequency Methods: An Application to the Scottish Economy
    Allan, Grant
    Koop, Gary
    McIntyre, Stuart
    Smith, Paul
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (SUPPL 1): : 12 - 45
  • [39] Non-parametric parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2011, 21 : 497 - 562
  • [40] Nowcasting Using Mixed Frequency Methods: An Application to the Scottish Economy
    Grant Allan
    Gary Koop
    Stuart McIntyre
    Paul Smith
    Sankhya B, 2019, 81 (Suppl 1) : 12 - 45