Nowcasting in a pandemic using non-parametric mixed frequency VARs

被引:31
|
作者
Huber, Florian [1 ]
Koop, Gary [2 ]
Onorante, Luca [3 ,4 ]
Pfarrhofer, Michael [1 ,6 ,7 ]
Schreiner, Josef [5 ]
机构
[1] Univ Salzburg, Salzburg, Austria
[2] Univ Strathclyde, Strathclyde, England
[3] European Commiss, Joint Res Ctr, Rome, Italy
[4] European Cent Bank, Frankfurt, Germany
[5] Oesterreich Nationalbank, Vienna, Austria
[6] Univ Salzburg, Dept Econ, Monchsberg 2a, A-5020 Salzburg, Austria
[7] Univ Salzburg, Salzburg Ctr European Union Studies SCEUS, Monchsberg2a, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Regression tree models; Bayesian; Macroeconomic forecasting; Vector autoregressions; BART;
D O I
10.1016/j.jeconom.2020.11.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops Bayesian econometric methods for posterior inference in non -parametric mixed frequency VARs using additive regression trees. We argue that regres-sion tree models are ideally suited for macroeconomic nowcasting in the face of extreme observations, for instance those produced by the COVID-19 pandemic of 2020. This is due to their flexibility and ability to model outliers. In an application involving four major euro area countries, we find substantial improvements in nowcasting performance relative to a linear mixed frequency VAR.(c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:52 / 69
页数:18
相关论文
共 50 条
  • [1] Simulation smoothing for nowcasting with large mixed-frequency VARs
    Ankargren, Sebastian
    Joneus, Paulina
    ECONOMETRICS AND STATISTICS, 2021, 19 : 97 - 113
  • [2] A Short Note on the Nowcasting and the Forecasting of Euro-area GDP Using Non-Parametric Techniques
    Guegan, Dominique
    Rakotomarolahy, Patrick
    ECONOMICS BULLETIN, 2010, 30 (01): : 508 - 518
  • [3] Frequency domain identification using non-parametric noise models
    Mahata, K
    Pintelon, R
    Schoukens, J
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 821 - 826
  • [4] Mixed parametric/non-parametric identification of systems with discontinuous nonlinearities
    Vincent, Tyrone L.
    Novara, Carlo
    AUTOMATICA, 2013, 49 (12) : 3661 - 3669
  • [5] Mixed Parametric/Non-parametric Identification of Systems with Discontinuous Nonlinearities
    Vincent, Tyrone L.
    Novara, Carlo
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 881 - 886
  • [6] Bayesian Mixed Frequency VARs
    Eraker, Bjorn
    Chiu, Ching Wai
    Foerster, Andrew T.
    Kim, Tae Bong
    Seoane, Hernan D.
    JOURNAL OF FINANCIAL ECONOMETRICS, 2015, 13 (03) : 698 - 721
  • [7] To be parametric or non-parametric, that is the question Parametric and non-parametric statistical tests
    Van Buren, Eric
    Herring, Amy H.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2020, 127 (05) : 549 - 550
  • [8] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [9] Magnitude optimum tuning using non-parametric data in the frequency domain
    Vrancic, D
    Strmcnik, S
    Hanus, R
    DIGITAL CONTROL: PAST, PRESENT AND FUTURE OF PID CONTROL, 2000, : 385 - 390
  • [10] Robust control of identified models with mixed parametric and non-parametric uncertainties
    Ninness, B
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (04) : 381 - 383