Moire fringes in conductive atomic force microscopy

被引:3
|
作者
Richarz, L. [1 ]
He, J. [1 ]
Ludacka, U. [1 ]
Bourret, E. [2 ]
Yan, Z. [2 ,3 ]
van Helvoort, A. T. J. [4 ]
Meier, D. [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
[4] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
基金
欧洲研究理事会;
关键词
Compendex;
D O I
10.1063/5.0145173
中图分类号
O59 [应用物理学];
学科分类号
摘要
Moire physics plays an important role in characterization of functional materials and engineering of physical properties in general, ranging from strain-driven transport phenomena to superconductivity. Here, we report on the observation of moire fringes in conductive atomic force microscopy (cAFM) scans gained on the model ferroelectric Er(Mn,Ti)O-3. By performing a systematic study of the impact of key experimental parameters on the emergent moire fringes, such as scan angle and pixel density, we demonstrate that the observed fringes arise due to a superposition of the applied raster scanning and sample-intrinsic properties, classifying the measured modulation in conductance as a scanning moire effect. Our findings are important for the investigation of local transport phenomena in moire engineered materials by cAFM, providing a general guideline for distinguishing extrinsic from intrinsic moire effects. Furthermore, the experiments provide a possible pathway for enhancing the sensitivity, pushing the resolution limit of local transport measurements by probing conductance variations at the spatial resolution limit via more long-ranged moire patterns.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Conductive tips for atomic force microscopy
    不详
    INDUSTRIAL CERAMICS, 2005, 25 (02): : 139 - 139
  • [2] Characterization of conductive probes for Atomic Force Microscopy
    Trenkler, T
    Hantschel, T
    Vandervorst, W
    Hellemans, L
    Kulisch, W
    Oesterschulze, E
    Niedermann, P
    Sulzbach, T
    DESIGN, TEST, AND MICROFABRICATION OF MEMS AND MOEMS, PTS 1 AND 2, 1999, 3680 : 1168 - 1179
  • [3] Conductive atomic force microscopy on carbon nanowalls
    Vetushka, A.
    Itoh, T.
    Nakanishi, Y.
    Fejfar, A.
    Nonomura, S.
    Ledinsky, M.
    Kocka, J.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (17) : 2545 - 2547
  • [4] Tomographic imaging using conductive atomic force microscopy
    Toh, Alexander Kang-Jun
    Ng, Vivian
    MATERIALS CHARACTERIZATION, 2022, 186
  • [5] Hydrocarbons in the Meniscus: Effects on Conductive Atomic Force Microscopy
    Tolman, Nathan L.
    Bai, Ruobing
    Liu, Haitao
    LANGMUIR, 2023, 39 (12) : 4274 - 4281
  • [6] Current-Limited Conductive Atomic Force Microscopy
    Weber, Jonas
    Yuan, Yue
    Pazos, Sebastian
    Kuehnel, Fabian
    Metzke, Christoph
    Schaetz, Josef
    Frammelsberger, Werner
    Benstetter, Guenther
    Lanza, Mario
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) : 56365 - 56374
  • [7] The Effect of Relative Humidity in Conductive Atomic Force Microscopy
    Yuan, Yue
    Lanza, Mario
    ADVANCED MATERIALS, 2024, 36 (51)
  • [8] Stripe noise removal in conductive atomic force microscopy
    Mian Li
    Jan Rieck
    Beatriz Noheda
    Jos B. T. M. Roerdink
    Michael H. F. Wilkinson
    Scientific Reports, 14
  • [9] Stripe noise removal in conductive atomic force microscopy
    Li, Mian
    Rieck, Jan
    Noheda, Beatriz
    Roerdink, Jos B. T. M.
    Wilkinson, Michael H. F.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [10] Understanding Current Instabilities in Conductive Atomic Force Microscopy
    Jiang, Lanlan
    Weber, Jonas
    Puglisi, Francesco Maria
    Pavan, Paolo
    Larcher, Luca
    Frammelsberger, Werner
    Benstetter, Guenther
    Lanza, Mario
    MATERIALS, 2019, 12 (03)