Matrix tree theorem for the net Laplacian matrix of a signed graph

被引:3
|
作者
Mallik, Sudipta [1 ,2 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
[2] No Arizona Univ, Dept Math & Stat, 801 S Osborne Dr,POB 5717, Flagstaff, AZ 86011 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 07期
关键词
Incidence matrix; Signed graph; Net Laplacian matrix; Matrix tree theorem;
D O I
10.1080/03081087.2023.2172544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple signed graph G with the adjacency matrix A and net degree matrix D-+/-), the net Laplacian matrix is L-+/-) = D-+/-) - A. We intro-duce a new oriented incidence matrix N +/- which can keep track of the sign as well as the orientation of each edge of G. Also L-+/-) = N-+/-)((NT)-T-+/-). Using this decomposition, we find the number of both positive and negative spanning trees of G in terms of the principal minors of L-+/-) generalizing the Matrix Tree Theorem for an unsigned graph. We present similar results for the signless net Laplacian matrix Q(+/-)) = D-+/-) + A along with a combinatorial formula for its determinant.
引用
收藏
页码:1138 / 1152
页数:15
相关论文
共 50 条
  • [41] On the Ky Fan norm of the signless Laplacian matrix of a graph
    S. Pirzada
    Rezwan Ul Shaban
    Hilal A. Ganie
    L. de Lima
    Computational and Applied Mathematics, 2024, 43
  • [42] The determinant of the Laplacian matrix of a quaternion unit gain graph
    Kyrchei, Ivan I.
    Treister, Eran
    Pelykh, Volodymyr O.
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [43] The Spectral Radius of the Reciprocal Distance Laplacian Matrix of a Graph
    Ravindra Bapat
    Swarup Kumar Panda
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 1211 - 1216
  • [44] Advancing Graph Convolution Network with Revised Laplacian Matrix
    Wang, Jiahui
    Guo, Yi
    Wang, Zhihong
    Tang, Qifeng
    Wen, Xinxiu
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (06) : 1134 - 1140
  • [45] The Spectral Radius of the Reciprocal Distance Laplacian Matrix of a Graph
    Bapat, Ravindra
    Panda, Swarup Kumar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) : 1211 - 1216
  • [46] On the determinant of the Laplacian matrix of a complex unit gain graph
    Wang, Yi
    Gong, Shi-Cai
    Fan, Yi-Zheng
    DISCRETE MATHEMATICS, 2018, 341 (01) : 81 - 86
  • [47] A new upper bound for eigenvalues of the Laplacian matrix of a graph
    Li, JS
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 265 : 93 - 100
  • [48] A note on the second largest eigenvalue of the Laplacian matrix of a graph
    Li, JS
    Pan, YL
    LINEAR & MULTILINEAR ALGEBRA, 2000, 48 (02): : 117 - 121
  • [49] Advancing Graph Convolution Network with Revised Laplacian Matrix
    WANG Jiahui
    GUO Yi
    WANG Zhihong
    TANG Qifeng
    WEN Xinxiu
    ChineseJournalofElectronics, 2020, 29 (06) : 1134 - 1140
  • [50] A new upper bound for eigenvalues of the Laplacian matrix of a graph
    Li, Jiong-Sheng
    Zhang, Xiao-Dong
    Linear Algebra and Its Applications, 1997, 265 (1-3): : 93 - 100