On the Ky Fan norm of the signless Laplacian matrix of a graph

被引:0
|
作者
S. Pirzada
Rezwan Ul Shaban
Hilal A. Ganie
L. de Lima
机构
[1] University of Kashmir,Department of Mathematics
[2] Government of Jammu Kashmir,Department of School Education
[3] Universidade Federal do Paraná,Departamento de Administração
来源
关键词
Signless Laplacian matrix; Signless Laplacian spectrum; Clique number; Forest; 05C50; 05C12; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
For a simple graph G with n vertices and m edges, let D(G)=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(G)=$$\end{document} diag(d1,d2,⋯,dn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_1, d_2, \dots , d_n)$$\end{document} be its diagonal matrix, where di=deg(vi),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i=\deg (v_i),$$\end{document} for all i=1,2,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\dots ,n$$\end{document} and A(G) be its adjacency matrix. The matrix Q(G)=D(G)+A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(G)=D(G)+A(G)$$\end{document} is called the signless Laplacian matrix of G. If q1,q2,⋯,qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_1,q_2,\dots ,q_n$$\end{document} are the signless Laplacian eigenvalues of Q(G) arranged in a non-increasing order, let Sk+(G)=∑i=1kqi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{+}_{k}(G)=\sum _{i=1}^{k}q_i$$\end{document} be the sum of the k largest signless Laplacian eigenvalues of G. As the signless Laplacian matrix Q(G) is a positive semi-definite real symmetric matrix, so the spectral invariant Sk+(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{+}_{k}(G)$$\end{document} actually represents the Ky Fan k-norm of the matrix Q(G). Ashraf et al. (Linear Algebra Appl 438:4539–4546, 2013) conjectured that [inline-graphic not available: see fulltext], for all k=1,2,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,2,\dots ,n$$\end{document}. In this paper, we obtain upper bounds to Sk+(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{+}_{k}(G)$$\end{document} for some infinite families of graphs. Those structural results and tools are applied to show that the conjecture holds for many classes of graphs, and in particular for graphs with a given clique number.
引用
收藏
相关论文
共 50 条
  • [1] On the Ky Fan norm of the signless Laplacian matrix of a graph
    Pirzada, S.
    Ul Shaban, Rezwan
    Ganie, Hilal A.
    de Lima, L.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [2] The Fan Graph is Determined by its Signless Laplacian Spectrum
    Muhuo Liu
    Yuan Yuan
    Kinkar Chandra Das
    [J]. Czechoslovak Mathematical Journal, 2020, 70 : 21 - 31
  • [3] The Fan Graph is Determined by its Signless Laplacian Spectrum
    Liu, Muhuo
    Yuan, Yuan
    Das, Kinkar Chandra
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) : 21 - 31
  • [4] On the spread of the distance signless Laplacian matrix of a graph
    Pirzada, S.
    Haq, Mohd Abrar Ul
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (01) : 38 - 45
  • [5] On the spectral radius of the adjacency matrix and signless Laplacian matrix of a graph
    Jahanbani, A.
    Sheikholeslami, S. M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6846 - 6851
  • [6] Some Relations Between the Eigenvalues of Adjacency, Laplacian and Signless Laplacian Matrix of a Graph
    Lin, Huiqiu
    Hong, Yuan
    Shu, Jinlong
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (03) : 669 - 677
  • [7] Some Relations Between the Eigenvalues of Adjacency, Laplacian and Signless Laplacian Matrix of a Graph
    Huiqiu Lin
    Yuan Hong
    Jinlong Shu
    [J]. Graphs and Combinatorics, 2015, 31 : 669 - 677
  • [8] On the maximal eigenvalue of signless P-Laplacian matrix for a graph
    Mei, Ying
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 169 - 172
  • [9] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [10] Signless Laplacian spectrum of a graph
    Ghodrati, Amir Hossein
    Hosseinzadeh, Mohammad Ali
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 257 - 267