Matrix tree theorem for the net Laplacian matrix of a signed graph

被引:3
|
作者
Mallik, Sudipta [1 ,2 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
[2] No Arizona Univ, Dept Math & Stat, 801 S Osborne Dr,POB 5717, Flagstaff, AZ 86011 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 07期
关键词
Incidence matrix; Signed graph; Net Laplacian matrix; Matrix tree theorem;
D O I
10.1080/03081087.2023.2172544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple signed graph G with the adjacency matrix A and net degree matrix D-+/-), the net Laplacian matrix is L-+/-) = D-+/-) - A. We intro-duce a new oriented incidence matrix N +/- which can keep track of the sign as well as the orientation of each edge of G. Also L-+/-) = N-+/-)((NT)-T-+/-). Using this decomposition, we find the number of both positive and negative spanning trees of G in terms of the principal minors of L-+/-) generalizing the Matrix Tree Theorem for an unsigned graph. We present similar results for the signless net Laplacian matrix Q(+/-)) = D-+/-) + A along with a combinatorial formula for its determinant.
引用
收藏
页码:1138 / 1152
页数:15
相关论文
共 50 条