EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert X. J. [1 ]
Shen, Erin Y. Y. [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular overpartition; crank; combinatorial interpretation; equality; CONGRUENCES;
D O I
10.1556/012.2023.01542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lovejoy introduced the partition function Al(n) as the number of l-regular overpartitions of n. Andrews defined (k, i)singular overpartitions counted by the partition function Ck,i(n), and pointed out that C3,1(n) = A3(n). Meanwhile, Andrews derived an interesting divisibility property that C3,1(9n+ 3) = C3,1(9n+ 6) = 0 (mod 3). Recently, we constructed the partition statistic rl-crank of l-regular overpartitions and give combinatorial interpretations for some congruences of Al(n) as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the r3-crank of 3-regular overpartitions.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [1] THE UNIMODALITY OF THE r 3-CRANK OF 3-REGULAR OVERPARTITIONS
    Hao, Robert xiaojian
    Shen, Erin yiying
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) : 621 - 635
  • [2] Almost 3-regular overpartitions
    Ballantine, Cristina
    Merca, Mircea
    RAMANUJAN JOURNAL, 2022, 58 (03): : 957 - 971
  • [3] Almost 3-regular overpartitions
    Cristina Ballantine
    Mircea Merca
    The Ramanujan Journal, 2022, 58 : 957 - 971
  • [4] There Are No 3-Regular Polyominos
    Beluhov, Nikolai
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (04): : 381 - 381
  • [5] On 3-Regular Tripartitions
    ChANDrashekar ADIGA
    Ranganatha DASAPPA
    Acta Mathematica Sinica,English Series, 2019, (03) : 355 - 368
  • [6] On 3-Regular Tripartitions
    Chandrashekar Adiga
    Ranganatha Dasappa
    Acta Mathematica Sinica, English Series, 2019, 35 : 355 - 368
  • [7] On 3-Regular Tripartitions
    ChANDrashekar ADIGA
    Ranganatha DASAPPA
    ActaMathematicaSinica, 2019, 35 (03) : 355 - 368
  • [8] On 3-Regular Tripartitions
    Adiga, Chandrashekar
    Dasappa, Ranganatha
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (03) : 355 - 368
  • [9] On 3-Regular Partitions in 3-Colors
    D. S. Gireesh
    M. S. Mahadeva Naika
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 137 - 148
  • [10] On 3-Regular Partitions in 3-Colors
    Gireesh, D. S.
    Naika, M. S. Mahadeva
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (01): : 137 - 148