EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert X. J. [1 ]
Shen, Erin Y. Y. [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular overpartition; crank; combinatorial interpretation; equality; CONGRUENCES;
D O I
10.1556/012.2023.01542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lovejoy introduced the partition function Al(n) as the number of l-regular overpartitions of n. Andrews defined (k, i)singular overpartitions counted by the partition function Ck,i(n), and pointed out that C3,1(n) = A3(n). Meanwhile, Andrews derived an interesting divisibility property that C3,1(9n+ 3) = C3,1(9n+ 6) = 0 (mod 3). Recently, we constructed the partition statistic rl-crank of l-regular overpartitions and give combinatorial interpretations for some congruences of Al(n) as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the r3-crank of 3-regular overpartitions.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [41] On a class of Hamiltonian laceable 3-regular graphs
    Alspach, B
    Chen, CC
    McAvaney, K
    DISCRETE MATHEMATICS, 1996, 151 (1-3) : 19 - 38
  • [42] 3-Regular subgraphs and (3,1)-colorings of 4-regular pseudographs
    Bernshtein A.Y.
    Bernshtein, A. Yu., 1600, Izdatel'stvo Nauka (08): : 458 - 466
  • [43] LONGEST CYCLES IN 3-CONNECTED 3-REGULAR GRAPHS
    BONDY, JA
    SIMONOVITS, M
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (04): : 987 - 992
  • [44] New parity results for 3-regular partitions
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2023, 46 (03) : 465 - 471
  • [45] The maximum genus of a 3-regular simplicial graph
    Deming L.
    Yanpei L.
    Applied Mathematics-A Journal of Chinese Universities, 1999, 14 (2) : 203 - 214
  • [46] On a class of Hamiltonian laceable 3-regular graphs
    Alspach, Brian
    Chen, C.C.
    McAvaney, Kevin
    1996, Elsevier (151) : 1 - 3
  • [47] On 3-Regular Subgraphs in Cartesian Product of Paths
    Miao, Lu
    Yang, Weihua
    JOURNAL OF INTERCONNECTION NETWORKS, 2018, 18 (2-3) : 2 - 3
  • [48] On 3-regular 4-ordered graphs
    Meszaros, Karola
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2149 - 2155
  • [49] Properties of the corolla polynomial of a 3-regular graph
    Kreimer, Dirk
    Yeats, Karen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [50] ON 3-AND 9-REGULAR OVERPARTITIONS MODULO POWERS OF 3
    Bharadwaj, H. S. Sumanth
    Hemanthkumar, B.
    Naika, M. S. Mahadeva
    COLLOQUIUM MATHEMATICUM, 2018, 154 (01) : 121 - 130