EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert X. J. [1 ]
Shen, Erin Y. Y. [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
Regular overpartition; crank; combinatorial interpretation; equality; CONGRUENCES;
D O I
10.1556/012.2023.01542
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lovejoy introduced the partition function Al(n) as the number of l-regular overpartitions of n. Andrews defined (k, i)singular overpartitions counted by the partition function Ck,i(n), and pointed out that C3,1(n) = A3(n). Meanwhile, Andrews derived an interesting divisibility property that C3,1(9n+ 3) = C3,1(9n+ 6) = 0 (mod 3). Recently, we constructed the partition statistic rl-crank of l-regular overpartitions and give combinatorial interpretations for some congruences of Al(n) as well as the congruences of Andrews. In this paper, we aim to prove some equalities for the r3-crank of 3-regular overpartitions.
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [21] ON TRIBONACCI NUMBERS AND 3-REGULAR COMPOSITIONS
    Robbins, Neville
    FIBONACCI QUARTERLY, 2014, 52 (01): : 16 - 19
  • [22] RECURSIVE CONSTRUCTION FOR 3-REGULAR EXPANDERS
    AJTAI, M
    COMBINATORICA, 1994, 14 (04) : 379 - 416
  • [23] 3-regular graphs are 2-reconstructible
    Kostochka, Alexandr, V
    Nahvi, Mina
    West, Douglas B.
    Zirlin, Dara
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 91
  • [24] DENSE GRAPHS WITHOUT 3-REGULAR SUBGRAPHS
    PYBER, L
    RODL, V
    SZEMEREDI, E
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 41 - 54
  • [25] 4-REGULAR GRAPHS WITHOUT 3-REGULAR SUBGRAPHS
    ZHANG, LM
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 691 - 699
  • [26] Largest 2-Regular Subgraphs in 3-Regular Graphs
    Choi, Ilkyoo
    Kim, Ringi
    Kostochka, Alexandr V.
    Park, Boram
    West, Douglas B.
    GRAPHS AND COMBINATORICS, 2019, 35 (04) : 805 - 813
  • [27] 3-Regular Colored Graphs and Classification of Surfaces
    Biplab Basak
    Discrete & Computational Geometry, 2017, 58 : 345 - 354
  • [28] On 4-ordered 3-regular graphs
    Tsai, Ming
    Tsai, Tsung-Han
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) : 1613 - 1619
  • [29] 3-Regular Colored Graphs and Classification of Surfaces
    Basak, Biplab
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (02) : 345 - 354
  • [30] Largest 2-Regular Subgraphs in 3-Regular Graphs
    Ilkyoo Choi
    Ringi Kim
    Alexandr V. Kostochka
    Boram Park
    Douglas B. West
    Graphs and Combinatorics, 2019, 35 : 805 - 813