THE UNIMODALITY OF THE r 3-CRANK OF 3-REGULAR OVERPARTITIONS

被引:0
|
作者
Hao, Robert xiaojian [1 ]
Shen, Erin yiying [2 ]
机构
[1] Nanjing Inst Technol, Coll Sci & Math, Nanjing 211167, Peoples R China
[2] Hohai Univ, Sch Math, Nanjing 210098, Peoples R China
关键词
Regular overpartition; r l-crank; monotonicity; unimodality; NUMBER;
D O I
10.4134/BKMS.b230269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An l - regular overpartition of n is an overpartition of n with no parts divisible by l. Recently, the authors introduced a partition statistic called r l -crank of l - regular overpartitions. Let M r l ( m, n ) denote the number of l - regular overpartitions of n with r l -crank m. In this paper, we investigate the monotonicity property and the unimodality of M r 3 ( m, n ). We prove that M r 3 ( m, n ) >= M r 3 ( m, n - 1) for any integers m and n >= 6 and the sequence { M r 3 ( m, n ) } | m |<= n is unimodal for all n >= 14.
引用
收藏
页码:621 / 635
页数:15
相关论文
共 50 条
  • [1] EQUALITIES FOR THE r3-CRANK OF 3-REGULAR OVERPARTITIONS
    Hao, Robert X. J.
    Shen, Erin Y. Y.
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2023, 60 (2-3) : 123 - 132
  • [2] Almost 3-regular overpartitions
    Ballantine, Cristina
    Merca, Mircea
    RAMANUJAN JOURNAL, 2022, 58 (03): : 957 - 971
  • [3] Almost 3-regular overpartitions
    Cristina Ballantine
    Mircea Merca
    The Ramanujan Journal, 2022, 58 : 957 - 971
  • [4] There Are No 3-Regular Polyominos
    Beluhov, Nikolai
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (04): : 381 - 381
  • [5] On 3-Regular Tripartitions
    ChANDrashekar ADIGA
    Ranganatha DASAPPA
    Acta Mathematica Sinica,English Series, 2019, (03) : 355 - 368
  • [6] On 3-Regular Tripartitions
    Chandrashekar Adiga
    Ranganatha Dasappa
    Acta Mathematica Sinica, English Series, 2019, 35 : 355 - 368
  • [7] On 3-Regular Tripartitions
    ChANDrashekar ADIGA
    Ranganatha DASAPPA
    ActaMathematicaSinica, 2019, 35 (03) : 355 - 368
  • [8] On 3-Regular Tripartitions
    Adiga, Chandrashekar
    Dasappa, Ranganatha
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (03) : 355 - 368
  • [9] On 3-Regular Partitions in 3-Colors
    D. S. Gireesh
    M. S. Mahadeva Naika
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 137 - 148
  • [10] On 3-Regular Partitions in 3-Colors
    Gireesh, D. S.
    Naika, M. S. Mahadeva
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (01): : 137 - 148